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Abstract: Laplace’s equation is one of the important equations in studying applied mathematics and engineering problems 

including the study of temperature distribution of steady-state heat conduction or the concentration distribution of steady-state 

diffusion problems. In this study, the analytical method has been applied to solve the Laplace's equation in a two-dimensional 

domain. For the specified Neumann or Dirichlet boundary conditions, the analytical solution of temperature distribution in the 

quarter-plane can be found by several methods including the Fourier transform method, similarity method, and the method of 

Green’s function with images. For different boundary conditions, the solution of temperature distribution of the Laplace’s 

equation will be in a totally different form. Nevertheless, the merit of this research is that the solutions of steady-state 

temperature distribution in the quarter plane with Neumann and Dirichlet boundary conditions are unified under the singular 

similarity solution with source type singularity. With the typical benchmarked examples for finding the temperature 

distribution by the numerical integral method, it is shown that Gibbs phenomenon behaves at a jump discontinuity, where 

serious oscillation result was found especially near the singular points of the boundary. In addition, the temperature distribution 

in the domain can be easily calculated without oscillation phenomenon near the singular points from the similarity solutions. 

Keywords: Laplace’s Equation, Fourier Transform, Green’s Function, Similarity Solution 

 

1. Introduction 

Many important physical problems described by 

mathematical models such as the heat equation, the wave 

equation, and others are taught in college courses [1-3]. The 

application of mathematical techniques to solve such a model 

described by the partial differential equations (PDE) is various, 

such as the numerical methods including finite difference 

method, finite element method and boundary element method 

for obtaining the approximate solutions [4-7], and the 

analytical methods for finding the exact solutions. General 

technique for finding the exact solutions of the linear PDE is 

the method of separation of variables, which is an approach by 

identifying the solution that depends on each of the 

independent variables separately [1-3]. There are also several 

techniques by reducing the PDE to an ordinary differential 

equation (ODE) which include various integral transforms and 

eigenfunction expansions [8]. However, there is an approach 

by identifying the PDE in terms of the solution depends on 

certain grouping of the independent variables. This approach to 

finding the solution is so-called the similarity method [9, 10]. 

As we know, the basic spirit of similarity transformations is 

the transformations by which an n-independent variable PDE 

can be converted to a system with (n-1) independent variables. 

The best situation is n=2 which is an approach for finding the 

solution of an ODE instead of finding the solution of a PDE. 

Laplace’s equation is one of the important equations in 

studying applied mathematics and engineering problems 

including the study of temperature distribution of steady-state 

heat conduction problems. For some boundary-value problems 

of semi-infinite strip or in the quarter-plane, it cannot be 

solved by the method of separation of variables [1-3, 8]. 

However, in these special domains, the operational method [11, 

12], and the method of Green’s function with images [13, 14] 

are appropriate to solve these kinds of boundary-value 
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problems. In general, the solutions from these methods are 

expressed by an integral form with which the solution has to be 

carried out through numerical calculations. 

Similarity method plays an important role in studying PDE 

for problems in mathematical physics and applied mechanics [9, 

10]. The general similarity solution of Laplace’s equation by the 

method of infinitesimal transformation groups was studied by 

Feng [15]. Moreover, similarity analysis of boundary value 

problem of Poisson’s equation and Helmholtz equation were 

also studied by Feng [16], and Feng and Lee [17]. 

In this paper, the two-dimensional steady-state heat 

conduction problem, such as Laplace’s equation for temperature 

distribution in a domain with semi-infinite strip and quarter-

plane has been investigated by the analytical method of Fourier 

transform. For the specified Neumann and Dirichlet boundary 

conditions, the analytical solutions of temperature in quarter-

plane were found by Fourier transform [1] and the method of 

Green’s function with images [13, 14]. All these solutions of 

integral form are related to the singular similarity solutions. 

As we know that for a solution of PDE, if with different 

boundary conditions then different solutions will turn out to 

be. Based on this study, nevertheless, all these solutions of 

two different boundary-value problems with Neumann and 

Dirichlet conditions are the same from the similarity point of 

view. In other words, these two kinds of solutions are unified 

under the singular similarity solution with the same source 

type singularity near some singular points in the domain as 

shown in the following sections. 

2. Solution of Laplace’s Equation by 

Fourier Transform Method 

2.1. Semi-infinite Strip with Neumann Condition 

���
��� +

���
��� = 0, 0 < � < �, 0 < 
 < ∞            (1) 

B.C. ��0, 
� = ���,0,
0 < 
 ≤ 1
1 < 
 < ∞� , ��

�� ��, 0� = 0           (2) 

���, 
� = 0, ���,∞� < ∞                      (3) 

 

Figure 1. Domain of semi-infinite trip for Neumann condition. 

where T(x, y) is the temperature in the domain and T0 is a constant 

as shown in Figure 1. This boundary value problem cannot be 

solved by the method of separation of variables for this 

complicated boundary condition. However, it is easy to solve by 

the method of integral transform such as Fourier transform. 

From Fourier cosine transform, we obtain the solution for 

equation (1)-(3) with Neumann condition in Figure 1 as 

follows [1]: 

���, 
� = ���
� � ��� �

�
���� �� !��

���� � 
"
� cos &
 '&         (4) 

2.2. Quarter-Plane with Neumann Condition 

For the case of quarter-plane, the domain of the same 

problem can be depicted as in Figure 2. 

 

Figure 2. Domain of quarter-plane for Neumann condition. 

As the semi-infinite strip length � → ∞ , we have the 

approximate result 

lim →"
���� �� !��
���� � → lim →"

,-./-0.1!-0./-.12
,-./!-0./2 → 3!��	  (5) 

Substituting (5) into (4), then the solution in the quarter-

plane can be expressed as follows. 

���, 
� = ���
� � ��� �

� 3!��"
� cos &
 '&          (6) 

Equation (6) can be calculated by the traditional numerical 

computation method such as the mean-value theorem for 

integration, which by setting very small interval, 'α between 

0 to α in equation (6), then the converged result is the sum of 

the area of all the intervals [4]. The accuracy of temperature 

distribution is based on the value, α, as long as it is approach 

infinitive. However, in this study, with dα=0.001, the value, 

α which is larger than 500 is accurate enough for finding the 

converged result in the domain. For T0=10, the distribution of 

temperature was calculated and depicted in Figure 3, with no 

matter how large the integration upper bound will be, the 

oscillation phenomena (so-called Gibbs phenomena) exist 

near the singular point (0,1). The 2-D contour plot for the 

temperature distribution is shown in Figure 4. 

 

Figure 3. The distribution of temperature from equation (6) by numerical 

calculation. 
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Figure 4. The 2-D contour of temperature distribution in the domain. 

2.3. Semi-infinite Strip with Dirichlet Condition 

���
��� +

���
��� = 0, 	

	0 < � < �, 0 < 
 < ∞            (7) 

B.C. ��0, 
� = ���,0,
	0 < 
 ≤ 1
	1 < 
 < ∞� , ���, 0� = 0          (8) 

���, 
� = 0, ���,∞� < ∞                    (9) 

where T(x, y) is the temperature in the domain and T0 is a 

constant. 

 

Figure 5. Domain of semi-infinite strip for Dirichlet condition. 

From Fourier sine transform, we obtain the solution for 

Dirichlet condition in Figure 5 as follows [1]. 

���, 
� = ���
� � �6!78� ��

�
���� �� !��

���� � 
"
� sin &
 '&     (10) 

2.4. Quarter-Plane with Dirichlet Condition 

For considering the domain of interest is in the first 

quarter-plane, with Dirichlet condition at y=0 was depicted 

as shown in Figure 6. 

 

Figure 6. Domain of quarter-plane for Dirichlet condition. 

As the semi-infinite strip length � → ∞ , we have the 

approximate result shown in equation (5). Substituting 

equation (5) into (10), the solution in the quarter-plane 

becomes 

���, 
� = ���
� � �6!78� ��

�
"
� 3!�� sin &
 '&        (11) 

Equation (11) can be calculated by the same numerical 

integration method as mentioned for computation of equation 

(6), the converged result of temperature distribution for 

�� = 10,	in the domain was shown in Figure 7 and the 2-D 

contour plot for the temperature distribution is shown in 

Figure 8. 

 

Figure 7. The distribution of temperature from equation (11) by numerical 

calculation. 

 

Figure 8. The 2-D contour of temperature distribution in the domain. 

By comparison with the distribution of temperature 

depicted between Figure 3 and Figure 7, it is clear that the 

Gibbs phenomenon exists near the singular points for both 

(0,0) and (0,1). 
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3. Solution of Laplace’s Equation by Similarity Method 

3.1. Quarter-Plane with Neumann Condition 

The solution obtained from Fourier cosine transformation, equation (6), is expressed as follows: 

���, 
� = ���
� :� ��� �

�
"
� 3!�� cos &
 '&; = ���

� Ι6��, 
�                                                      (12) 

Where 

Ι6��, 
� = � ����
�

"
� 3!�� cos &
 '&                                                                     (13) 

From the Integral table [18], equation (13) gives 

Ι6��, 
� = � ����
�

"
� 3!�� cos &
 '& = 6

� tan!6 :
��

��?��!6;	                                                     (14) 

Substituting (14) into (12), we obtain the temperature solution in the quarter-plane, 

���, 
� = ���
� :� ��� �

�
"
� 3!�� cos &
 '&; = ��

� tan!6 :
��

��?��!6;                                                  (15) 

From trigonometric relation, we have 

tan!6 ��
��?��!6+ tan!6 ��?��!6

�� = �
�                                                                        (16) 

Then, the solution (15) becomes 

���, 
� = �� @6� −
6
� tan!6 :

��?��!6
�� ;B                                                                       (17) 

By setting similarity variable with C��, 
� = ,��?��!62
�� , then equation (17) becomes the similarity solution. 

���, 
� = ���6�−
6
� tan!6 C� = D�C�, −∞ < C < ∞.                                                          (18) 

and the similarity function D�C�  satisfies Laplace’s equation, the following second order ODE can be derived through 

similarity transform. 

�1 + C�� F�GFH� + 2C FG
FH = 0, −∞ < C < ∞.                                                                    (19) 

with the boundary conditions 

D�∞� = 0, D�−∞� = ��                                                                                  (20) 

The general solution of equation (19) is 

D�C� = J6 tan!6 C + J�                                                                                   (21) 

From the boundary conditions (20), yields 

J6 = !��
� , 	J� = ��

�                                                                                           (22) 

Finally, we obtain the similarity solution of T(x, y) in the quarter-plane as follows: 

���, 
� = ���
� :� ��� �

�
"
� 3!�� cos &
 '&; = �� :6�−

6
� tan!6 C; , −∞ < C < ∞.                                   (23) 

For �� = 10,	 the temperature distribution of Laplace’s 

equation in a quarter-plane with Neumann condition can be 

easily calculated from the similarity solution (23), as shown 

in Figure 9. And the 2-D contour of temperature distribution 

is shown in Figure 10. 

By comparing the results between Figure 3 and Figure 9, 

it’s clear that near the singular point (0,1), where the 

numerical solution shown in Figure 3 presents the Gibbs 

phenomenon due to the peculiar manner in which the Fourier 

series of a piecewise continuous function behaves at a jump 

discontinuity. Nevertheless, this particular phenomenon does 

not exist in the similarity solution as shown in Figure 9. 
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Figure 9. The distribution of temperature in the domain from equation (23) 

by similarity method. 

 

Figure 10. The 2-D contour of temperature distribution in the domain. 

3.2. Quarter-Plane with Dirichlet Condition 

From equation (11), the solution obtained from Fourier 

Sine transform is expressed as follows: 

���, 
� = ���
� �� �6!78���

�
"
� 3!�� sin &
 '&� = ���

� [Ι���, 
� − ΙL��, 
�]                                  (24) 

where 

Ι���, 
� = � -0.1
� sin &
	'&"

�                                                                             (25) 

ΙL��, 
� = � 78��
� 3!�� sin &
	'&"

�                                                                        (26) 

From Integral Table [18], we obtain 

Ι���, 
� = � -0.1
� sin &
	'&"

� = tan!6 �
�                                                                (27) 

ΙL��, 
� = � 78��
� 3!�� sin &
	'&"

� = 6
� tan!6 :

���
��!��?6;                                                   (28) 

Thus, we have 

Ι���, 
� − ΙL��, 
� = @tan!6 :��; −
6
� tan!6 :

���
��!��?6;B                                                   (29) 

From trigonometry [18], we have 

tan!6Α − tan!6Β = tan!6 : P!Q
6?PQ;                                                                     (30) 

Based on equation (30), yields 

Ι���, 
� − ΙL��, 
� = 6
� tan!6 :

�
�; +

6
� @tan!6 :

�
�; − tan!6 : ���

��!��?6;B 	=
6
� tan!6

���
���?����?���!���                  (31) 

Substituting (31) into (24), we obtain the temperature solution in the quarter-plane, 

���, 
� = ���
� � �6!78� ��

�
"
� 3!�� sin &
 '& = ��

� tan!6
���

���?����?���!���                                      (32) 

Similar to equation (16), solution (32) becomes 

���, 
� = �� @6� −
6
� tan!6

���?����?���!���
��� B                                                             (33) 

By setting similarity variable ξ��, 
� = ���?����?���!���
��� , then (33) becomes the similarity solution of the form 

���, 
� = ���6�−
6
� tan!6 S� = T�S�, −∞ < S < ∞                                                       (34) 
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and the similarity function T�S� satisfies the 2
nd

 order O.D.E 

�1 + S�� F�UFV� + 2S FU
FV = 0, −∞ < S < ∞                                                                (35) 

with the boundary conditions 

T�∞� = 0, T�−∞� = ��                                                                              (36) 

The general solution of (36) is 

T�S� = JL tan!6 S + JW                                                                              (37) 

From the boundary condition (36), we obtain 

JL = !��
� , 	JW = ��

�                                                                                     (38) 

Finally, we obtain the similarity solution of T(x, y) in the quarter-plane as follows: 

���, 
� = ���
� �� �6!78���

�
"
� 3!�� sin &
 '&� = �� :6�−

6
� tan!6 S; , −∞ < S < ∞                      (39) 

For �� = 10,	the solution of temperature distribution of the 

quarter-plane with Dirichlet condition can be easily 

calculated from the similarity solution, equation (39), as 

shown in Figure 11. And the 2-D contour of temperature 

distribution is shown in Figure 12. 

 

Figure 11. The distribution of temperature in the domain from equation (39) 

by similarity method. 

 

Figure 12. The 2-D contour of temperature distribution in the domain. 

By comparison of the results between Figure 7 and 

Figure 11, it’s clear that near the two singular points (0,0) 

and (0,1), the numerical solution presents the Gibbs 

phenomenon due to a particular manner in which the 

Fourier series of a piecewise continuous function behaves at 

a jump discontinuity. 

4. Solution of Laplace’s Equation by the 

Method of Images 

By using the method of Green’s function with images 

mentioned in [13, 14], Laplace’s equation in the quarter-

plane with Neumann and Dirichlet conditions can be solved 

and discussed in the following section. 

4.1. Quarter-Plane with Neumann Condition 

���
��� +

���
��� = 0, 0 < � < ∞, 0 < 
 < ∞	         (40) 

B.C.              ��0, 
� = D�
�                   (41) 

∂T
∂y �x,0�=0                                 (42) 

 

Figure 13. Domain of quarter-plane for Neumann condition. 

The general solution in the quarter-plane as shown in 

Figure 13 with Neumann condition from [13, 14] is 
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���, 
� = �
� � D�
�� @ 6

��?���!��� +
6

��?���?���B
"
� '
� = 6

� [ΙW��, 
� + Ι[��, 
�]                               (43) 

with 

ΙW��, 
� = � �	G����
��?���!��� '
�

"
�                                                                     (44) 

Ι[��, 
� = � �	G����
��?���?��� '
�

"
�                                                                     (45) 

If the boundary condition is	��0, 
� = D�
� = ���, 0 < 
 ≤ 1
�6, 1 < 
 < ∞�, we obtain 

ΙW��, 
� = �� � �
��?���!��� '
�

6
� + �6 � �

��?���!��� '
�
"
6 = �� tan!6 :��!�� ;\ 6�+	�6 tan!6 :��!�� ;\"6 = �� @tan!6 :6!�� ; +

tan!6 �
�B + �6 @��− tan!6 :6!�� ;B                                                                (46) 

Ι[��, 
� = �� � �
��?���?��� '
�

6
� + �6 � �

��?���?��� '
�
"
6 	= �� @tan!6 :6?�� ; − tan!6 �

�B + �6 @��− tan!6 :6?�� ;B       (47) 

Finally, substituting (46) and (47) into (43), we obtain the solution in the quarter-plane with Neumann condition. 

���, 
� = ��
� tan!6�

��
��?��!6� +

�]
� @π − tan!6� ��

��?��!6�B                                             (48) 

If �6 = 0, from (48), we obtain the solution 

���, 
� = ��
� tan!6 :

��
��?��!6; =

��
� @

�
� − tan!6 :��?��!6�� ;B = D�C�                                       (49) 

with similarity variable C��, 
� = :��?��!6�� ; , −∞ < C < ∞. 

The similarity solution (49) is the same as (18) obtained 

from the Fourier cosine transform. In other words, the 

similarity solution (49) can be found from the Fourier 

transform and the method of images from Green’s function 

with Neumann condition. 

If �6 = ��, from (48), we obtain the special solution 

���, 
� = ��                               (50) 

everywhere in the domain with Neumann condition. 

4.2. Quarter-Plane with Dirichlet Condition 

���
��� +

���
��� = 0, 0 < � < ∞, 0 < 
 < ∞	           (51) 

B.C. 		��0, 
� = D�
�                                       (52) 

�	��, 0� 	= 	0                              (53) 

 

Figure 14. Domain of quarter-plane for Dirichlet condition. 

The general solution T(x, y) in the quarter-plane as shown 

in Figure 14 with Dirichlet condition from [13, 14] is 

���, 
� = �
� � D�
� @ 6

��?���!��� −
6

��?���?���B
"
� '
� = 6

� [ΙW��, 
� − Ι[��, 
�]                                (54) 

with ΙW��, 
� = � �	G����
��?���!��� '
�

"
�  and Ι[��, 
� = � �	G����

��?���?��� '
�
"
� . 

If the boundary condition is ��0, 
� = D�
� = ���, 0 < 
 ≤ 1
�6, 1 < 
 < ∞� , substituting (46) and (47) into (54) we obtain the 

following solution in the quarter-plane with Dirichlet condition. 

���, 
� = ��
� @2 tan!6 :

�
�; − tan!6 : ���

��!��?6;B +
�]
� tan!6 :

���
��!��?6;                                      (55) 

If �6 = 0, we obtain 
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���, 
� = ��
� @2 tan!6 :

�
�; − tan!6 : ���

��!��?6;B 	= �� _6�−
6
� tan!6

,��?��2�?,��!��2
��� ` = T�S�                     (56) 

with similarity variable S��, 
� = ,��?��2�?,��!��2
��� , −∞ < S < ∞. 

The similarity solution (56) is the same as (33) obtained from Fourier sine transform. In other words, the similarity solution (56) 

can be found from Fourier transform and the method of images from Green’s function with Dirichlet condition. 

If �6 = ��, from (55), we obtain the fundamental similarity solution 

���, 
� = ���
� tan!6 :��; = T�S�                                                                      (57) 

with similarity variable S = �
� , 0 < S < ∞.  

5. A Unified Solution of Laplace’s Equation in the Quarter-Plane with Neumann and 

Dirichlet Conditions 

From (17) and (49), the solution obtained from Fourier cosine transform and the method of images from Green’s function 

with Neumann condition is 

���, 
� = ���
� � ��� �

�
"
� 3!�� cos &
 	'& = ��

� � @ �
��?���!��� +

�
��?���?���B '
�

6
� 	= ��

� @
�
� − tan!6 :��?��!6�� ;B = 	D�C�        (58) 

with similarity variable C��, 
� = :��?��!6�� ; , −∞ < C < ∞. 

From (33) and (56), the solution obtained from Fourier sine transform and the method of images from Green’s function with 

Dirichlet condition is 

���, 
� = ���
� � �6!78� ��

�
"
� 3!�� sin &
 '& = ��

� � @ �
��?���!��� −

�
��?���?���B '
�

6
� 	= ��

� �
�
� − tan!6 S� = T�S�            (59) 

with similarity variable 	S��, 
� = ,��?��2�?,��!��2
��� , −∞ < S < ∞. 

Comparing (58) with (59), these two types of integral solutions are completely different and it seems that there is no 

connection between them. However, we found that these two different solutions have the following similarity form, 

respectively. 

���, 
� = D�C�, −∞ < C < ∞                                                              (60) 

���, 
� = T�S�, −∞ < S < ∞                                                              (61) 

However, the similarity function D�C� in (60) and T�S� in (61) satisfy the same ordinary differential equation and the same 

boundary conditions in (19), (20) and (35), (36) respectively. 

Finally, these two different boundary-value problems are the same from the similarity point of view. The reason is that these 

two different boundary-value problems have the same source type singularity near the singular point at ��, 
� = �0,1� as 

shown below. 

From (58), the similarity solution of Laplace’s function in the quarter-plane with Neumann condition is 

���, 
� = 	D�C� = ��
� @

�
� − tan!6 :��?��!6�� ;B. 

Near the singular point ��, 
� = �0,1�, by setting � = �∗, 
 = 1 + 
∗, then in the limit of �∗ → 0 and 
∗ → 0, (58) becomes 

lim�→�∗
�→6?�∗

���, 
� = lim�→�∗
�→6?�∗

D�C� → lim�→�∗
�→6?�∗

tan!6 ��?��!6
�� →	 lim�→�∗

�→6?�∗
tan!6 �∗�?�6?�∗��!6

��∗                          (62) 

Neglecting the higher order term in (62), then we have source type singularity near the singular point ��, 
� = �0,1� for 

Neumann condition, i.e. 

lim�→�∗
�→6?�∗

���, 
� = lim�→�∗
�→6?�∗

D�C� → lim�∗→�
�∗→�

tan!6 �∗
�∗                                                       (63) 

From (59), the similarity solution of Laplace equation in the quarter-plane with Dirichlet condition is 
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���, 
� = T�ξ� = ��
� _

�
� − tan!6 ,��?��2�?,��!��2

��� `. 

Near the singular point ��, 
� = �0,1�, by setting � = �∗, 
 = 1 + 
∗, then in the limit of �∗ → 0 and 
∗ → 0, (59) becomes 

lim�→�∗
�→6?�∗

���, 
� = lim�→�∗
�→6?�∗

T�ξ� → lim�→�∗
�→6?�∗

tan!6 ���?����?���!���
��� →	 lim�→�∗

�→6?�∗
tan!6 b�∗�?�6?�∗��c�?b�∗�!�6?�∗��c

��∗�6?�∗�         (64) 

Neglecting the higher order terms in (64), we obtain the same source type of singularity as equation (63) near the singular 

point ��, 
� = �0,1� for Dirichlet condition, i.e. 

lim�→�∗
�→6?�∗

���, 
� = lim�→�∗
�→6?�∗

T�ξ� → lim�∗→�
�∗→�

tan!6 �∗
�∗.                                                           (65) 

Similarly, from (59), there is another source type singularity near the singular point ��, 
� = �0,0�. By setting � = �∗, 
 =

∗, then in the limit of �∗ → 0 and 
∗ → 0, (59) becomes 

lim�∗→�
�∗→�

���, 
� → lim�∗→�
�∗→�

tan!6 ���?����?���!���
��� → lim�∗→�

�∗→�
tan!6 ,�∗�?�∗�2�?,�∗�!�∗�2

��∗�∗ 	                                (66) 

Neglecting higher-order terms in (66), we obtain another source type singularity near the singular point ��, 
� = �0,0� for 

Dirichlet condition, i.e. 

lim�→�
�→�

���, 
� = lim�→�
�→�

T�ξ� → lim�∗→�
�∗→�

tan!6 :�∗�!�∗���∗�∗ ;                                                          (67) 

In principle, Laplace’s equation gives different solutions 

for different boundary conditions. However, if these solutions 

of different boundary-value problems have the same type of 

singularity near some singular points, then these different 

solutions can be unified as the same type of singular 

similarity solution as shown above. 

6. Conclusion 

Laplace’s equation for temperature distribution, in a 

domain with semi-infinite and in the quarter-plane, has 

been studied by the analytical methods. For the specified 

Neumann and Dirichlet boundary conditions, the 

analytical solution in the quarter-plane found by Fourier 

transform, the method of Green’s function with images, 

and the similarity method are unified. In this study, we 

found that for different boundary-value problems if the 

solutions have the same type of singularity near some 

singular points on the boundary, then these different 

solutions can be unified as the same type of singular 

similarity solution. 

For the specified Neumann or Dirichlet boundary 

conditions, the temperature distribution in the quarter-

plane domain can be easily calculated from the similarity 

solutions. However, it is shown that Gibbs phenomenon 

behaves at a jump discontinuity, where serious oscillation 

result was found from the integral methods, especially 

near the singular point on the boundary. This study proves 

that the similarity solution can be used to check the 

accuracy of numerical solutions. In addition, this paper 

provided a new way to evaluate some definite integrals 

analytically. 
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