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Abstract: In this paper, the combination of methods is used for the search for exact solutions, when they exist of mixed and 

non-mixed nonlinear partial differential equations. it is the combinate of reduced differential transform method and Picard 

principle. This combination gave us an algorithm that promotes the rapid convergence of the problem given the exact solution 

desired. Some complex physical behaviors can be described by mathematical expressions. These expressions can be nonlinear 

partial differential equations and sometimes mixed. For a better understanding of the physical phenomena associated with such 

partial differential equations, the exact solution, when it exists, is better indicated. However, by using classical analytical 

methods, the access or the obtaining of the exact solution is not always obvious. With some hybrid algorithms, the difficulties of 

accessing this exact solution can be difficult or almost impossible. Hence the coupling of some algorithms to reach the desired 

result. The objective of our work is the search for exact solutions when they exist of mixed and unmixed nonlinear partial 

differential equations. Although the reduced transform method has presented several interesting results, the difficulties of 

obtaining exact solutions have also been encountered. Thus, in this paper, a combination is used to find exact solutions, when 

they exist, of these types of partial differential equations. It is the combination of the reduced transform method and Picard's 

principle. This Picard principle, which uses the Adomian decomposition method, works as a method of successive 

approximations, approaching the problem by an iterative scheme. This combination gave us an algorithm that favors the fast 

convergence of the problem. Thus, the exact solutions of the selected problems are obtained. 

Keywords: Nonlinear PDEs, Reduced Differential Transform Method (RDTM), SBA Method, Picard Principle 

 

1. Introduction 

Most physical phenomena are modeled by differential 

equations (ODE), integro-differential equations, partial 

differential equations (PDEs). Obtaining the exact solution 

has always been desired, when it exists. These different 

solutions help to understand and explain the physical 

phenomena that these equations model. 

For the search of these exact solutions, several methods 

have been implemented. Depending on the nature of the 

equation, especially the partial differential equation, the use 

of classical, semi-analytical or approximation methods for 

the search of solutions does not always lead us to the exact 

solutions sought, when they exist. In order to obtain 

satisfactory results, algorithms of some classical methods 

have sometimes been improved or modified to solve some of 

these complex problems. With these algorithms, although 

modified or improved, the access to the exact solution 

sometimes presented considerable difficulties, to the point of 

being satisfied with an approximate solution. 

Always with the aim of arriving at the exact solution, te 

researchers did not cross their arms. They have sometimes 

opted for the combination of methods, which has sometimes 

led to satisfactory results. When will refer to some cases such 

as: Laplace-Adomian method, Laplace-VIM method, 

Laplace-SBA method [15, 20], and many other. In the 

literature review we have gone through, we were interested in 

the RDTM [1-9, 11-14, 16, 17, 19, 21-25]. The efficiency of 

this method for solving nonlinear and mixed PDEs has 

impressed us. Nevertheless, we have noticed that in some 
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cases, or for some PDEs, the access to the exact solution has 

proved to be difficult, to the point of being satisfied with an 

approximate solution. In other cases, the outcome to the 

exact solution was not explicit [8]. This motivated us propose 

a new algorithm taking into account the RDTM and the 

Picard principle. Our work consists in solving nonlinear and 

mixed PDEs by combining Picard’s principle and RDTM. 

The Picard principle is used as in the SBA method. This 

combination gives us a rather simple algorithm to obtain the 

exact solutions, when they exist. 

2. Description of the Methods 

2.1. Reduced Differential Transform Method (RDTM) 

In this subsection, we will give the origin of the method 

and then the essential elements for its application. 

The Reduced Differential Transformation Method (RDTM) 

was first proposed by the Turkish mathematician Yildiray 

Keskin [12]. This method is applicable to a large class if it 

exists. After Yildiray Keskin and Oturanc [13, 14], The 

RDTM has also been used by many authors to obtain 

analytical approximate and in some cases exact solutions to 

nonlinear equations. Several types of nonlinear equations have 

had their different exact solutions easily obtained. We can 

quote the nonlinear Voltera partial integro-differential 

equation, the Telegraph equation The inhomogeneous 

nonlinear wave equation. For more details, we can refer [1-9, 

17, 18, 21-24]. Nevertheless, now suppose that function of 

two variables ���, ��  which is analytic and k-times 

continuously differentiable with respect to space �  in the 

domain of our interest [17, 19]. Suppose that we can consider 

this function in this form: ���, �� = ����. 
���. Based on the 

properties of differential transform, function can be 

represented as 

���, �� = �∑ ��
������� ��∑ ������ = ∑ ��������������� � (1) 

Where the function ����� is the transformed function of ���, �� which can be defined as: 

	����� = ��! � ��
��� ���, �� ���       (2) 

From equations (1) and (2) one can deduce 

���, �� = ∑ ��! ���!�",�����  ��� ������ = ∑ ����������� 								(3) 

In this work, the lowercase ���, �� represent the original 

function, while the uppercase ����� stand for transformed 

function [14, 22-24]. 

The details for the proper understanding of the reduced 

differential transformation method are well explained by 

Keskin who is the author [12]. Many researchers have also 

contributed to facilitate the understanding and use of this rich 

method [1-3, 6, 7, 9, 21-23]. 

To illustrate the basic concepts of the RDM, consider the 

following nonlinear partial differential equation written in an 

operator form: 

#���, �� + %���, �� + &���, �� = ℎ��, ��     (4) 

with initial condition: 

���, 0� = ����             (5) 

According to the RDTM, we can construct the iteration 

formula as follows [1, 3, 5, 7]: 

�) + 1���+���� = ����� − %����� − &����� (6) 

Some basic essential properties of the two-dimensional 

reduced differential transform are presented in Table below. 

Table 1. The fundamental operations of RDTM. 

Functional Form Transformed Form ���, �� ����� = ��! � ��
��� ���, �� ���  -��, �� = ���, �� ± /��, �� 0���� = ����� ± 1���� -��, �� = 2���, �� 0���� = 2�����	�2	
3	4	5673�47�� -��, �� = �8�9 0���� = �8:�) − 7� -��, �� = �8�9���, �� 0���� = �8��;9��� -��, �� = ���, ��/��, �� 0���� = ∑ 1<�����;<��� =�<�� ∑ �<���1�;<����<��   -��, �� = �=

��= ���, ��  0���� = �) + 1�⋯�) + ?���+���� = ��+<�!�! ��+<���  -��, �� = ��" ���, ��  0���� = ��" �����  

 

2.2. Picard Principle 

It is from the SBA method that we have been inspired for 

the technique of using the Picard principle. The principle uses 

the Adomian decomposition method. The method is well 

adapted to nonlinear PDEs [15, 18, 20]. 

Let us solve the following problem: 

@�� = #������ + &������, 0 < � < B��0� = � 	      (7) 

in a suitable functional space 1; with # a linear differential 

operator, & the nonlinear term, ���� the unknown function, 

with  

�� = C�
C�  

By the method of successive approximations, the above 

problem can be approximated by the following iterative 

scheme: 

@��) = #��)���� + &��)����, 0 < � < B�)�0� = �, ) = 1, 2,3, ⋯ 	  (8) 
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The resolution of the scheme �8� consists in determining at 

each iteration �) = 1,2,3,⋯ � approximate solutions 

�1���, �2���, �3���, ⋯ , �7���, ⋯ 

But this requires a judicious choice of the initial condition �0, and the solution U of the problem is obtained by: 

���� = lim�→+� �����          (9) 

if ��)�)≥0 is convergent. We use the Adomian method to 

solve the problem at each iteration. 

At the first step, �) = 1� we need to know �0��� to start 

the algorithm in the linear case. However, the general rule for 

the choice of U is to take it such that it is a solution of the 

equation	&������ = 0. 
Note that �)�0� = �, ∀	) = 1, 2,3, ⋯  is the Cauchy 

condition for each step ). The approximate solution �)��� of �8� is  

���� = lim�→� ����� = lim�→��∑ �9�����9�� �  (10) 

The description below explains in an explicit way how the 

principle works. �01: first term of the Adomian series of step 1; �11:	27N term of the Adomian series of step 1 ⋮  �71:	�7 + 1� term of the Adomian series of step 1. 

The approximate solution of this first iteration is written: 

�1��� = limP→+∞RP1 ��� where RP1 ��� = ∑ �71���P−17=0   

After, we will be at the second iteration from which will 

result the calculation of the approximate solution of this 

second iteration.  �02: first term of the Adomian series of step 2; �12:	27N term of the Adomian series of step 2 ⋮  �72:	�7 + 1� term of the Adomian series of step 2. 

The approximate solution of this second iteration is written: 

�2��� = limP→+∞RP2 ���  

where	RP2 ��� = ∑ �72���P−17=0   

One by one, we will be at the )�W  iteration. The 

approximate solution of the )�W iteration is written: 

�)��� = ∑ �7)���P−17=0   

The solution of the problem is obtained by: 

���� = lim�→+� ∑ �9����8;�9��   

Here we also show how to choose the first iteration term �0���,  of the successive approximation scheme to obtain 

algorithms, that converge faster to the exact solution sought by 

simplifying the calculations. 

Just choose �0��� such that &��0���� = 0. 

This choice allows in fact, at the first iteration to solve only 

a linear problem, as shown in the process below. 

@������ = #����������0� = �	 	 
Where a resolution by the Adomian method allows to find �1���. From the known �1���, the calculation of &��1���� 

will follow. 

For ) = 2, we obtain:  

@��X = #��X� + &�����X�0� = �	 	 
Where �1��� is the solution obtained in the first step; and &��1� = 
1, knowing that 
)−1��� = &��)−1����. Once 

again, we will solve a linear problem for Adomian 

decomposition method. Thus, from one step to the next, the 

different solutions are obtained �), with ) = 1,2,3,⋯ 

Thus, ���� = lim�→+� �����. 
3. Applications 

3.1. Example 1 

Consider the following nonlinear Fornberg-Witham 

equation [8, 11]. This problem has been addressed with 

RDTM; but the algorithm used to obtain the exact solution 

was not enough explicit. We have given enough details for the 

reader, for a better understanding. 

�� − �""� + �" = ��""" − ��" + 3�"�""     (11) 

With the initial condition: ���, 0� = YZ[\ 

Considering the second member of equation (5) as the 

nonlinear part in the variable � exclusively, we obtain the 

following writing: 

�� − �""� + �" = &���, ��           (12) 

If we apply the RDTM to equation (6), we obtain the 

following iteration formula:  

�) + 1���+���� − �) + 1� ]�[^�_Z�"��"[ ` + �^��"��" = &����� (13) 

Using the method of successive approximations and 

Picard's principle, we obtain the following algorithm (8): 

�) + 1���+�a − �) + 1� b�[^�_Zc
�"[ d + �^�c�" = &��a;�	 (14) 

From this step, e	 ∈ 	ℕ∗. Consequently, we obtain: 

e = 1:	�) + 1���+�� − �) + 1� ]�[^�_ZZ
�"[ ` + �^�Z�" = &���	 (15) 

Picard's principle consists in finding a �� belonging to the 

Hilbert space such that the nonlinear part can be cancelled. 

That is: ��� 	 ∈ i	3�5ℎ	�ℎ4�	&��� = 0. 

The following expression is derived from this. 
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�) + 1���+�� − �) + 1� ]�[^�_ZZ
�"[ ` + �^�Z�" = 0	 (16) 

we proceed to the determination of the approximate solution. 

Therefore, for ) = 0, we have: 

��� − ]�[^ZZ�"[ ` + �^jZ�" = 0	         (17) 

Using the initial condition, we obtain: 

�^jZ�"��" = �X exp ]�X �`             (18) 

The substitution of relation (12) in relation (11) leads us to 

the following inhomogeneous differential equation. 

�[^ZZ�"[ − ��� = �X exp ]�X �`           (19) 

Homogeneous equation: 

�[^ZZ�"[ − ��� = 0                (20) 

Homogeneous solution: ��W = m + nY" 

Particular solution: 

��a� = 2 Y�e ]�X �`  

Either  

�o 2 exp ]�X �` − 2 exp ]�X �` = �X exp ]�X �` 	⟹ 	2 = − Xq  

the general solution is given by the expression: 

������ = ��W + ��a = m + nY" − Xq YZ["	     (21) 

For reasons of the initial condition, we take: m = n = 0. 
Therefore, 

	������ = − Xq exp ]�X �`            (22) 

Let's proceed to the manipulation of the algorithm to obtain 

the different terms of the series. 

�6?	) = 1:	2�X���� − 2 �[^[Z�"��"[ + �^ZZ�"��" = 0  (23) 

With 
�^ZZ�"��" = − �q exp	]�X �` 

equation (17) becomes a non homogeneous differential 

equation: 

2 �[^[Z�"��"[ − 2�X���� = − �q exp ]�X �`	      (24) 

the characteristic equation associated with the homogeneous 

equation is: ?X + ? = 0 

By the same principle of the condition imposed because of 

the initial condition, we obtain: 

2m� exp ]�X �` − �X 	m� exp ]�X �` = �q 	exp ]�X �`  

Either: m� = Xr. So 	�Xa� ��� = Xr 	exp ]�X �` 

�6?	) = 2:	3�q���� − 3 �[^sZ�"��"[ + �^[Z�"��" = 0   (25) 

With 

�^[Z�"��" = �r exp ]�X �`             (26) 

The substitution of equation (20) in equation (19) gives 

the following non homogeneous equation (21) whose 

solution is 

3 �[^sZ�"��"[ − 3�q���� = �r exp ]�X �`        (27) 

After all calculations made, by the same principles, we 

obtain: �q���� = − ot� exp ]�X �` 

�6?	) = 3:	4�o���� − 4 �[^vZ�"��"[ + �^sZ�"��" = 0  (28) 

With 

�^sZ�"��" = − ot� exp ]�X �`          (29) 

By the same procedure, the differential equation is obtained 

and then solved. From these calculations, the solution below 

follows: �o���� = XXoq exp ]�X �` 

Gold: 

�w9��, �� = ∑ ������� = ������� + ������� + �X����X9��� + �q����q + �o����o + ⋯  

�w9��, �� = exp ]�X �`	]1 − Xq � + Xr �X − ot� �q + XXoq �o + ⋯`  

�w9��, �� = exp ]�X �` ]∑ �9! ]− Xq �`9�x� `                               (30) 

The exact solution can be deduced by passing to the limit. 

The exact solution is 

���, �� = Y�e ]�X � − Xq �`           (31) 

3.2. Example 2 

Consider the following nonlinear equation [26] with its 

initial condition, given by the expression 

y�� = �X − 4��" + 2�"� − �t �
���, 0� = Y�e ]�o �` 	       (32) 

The equation can also be written as: 

�� − 2�"�+ �t � = �X − 4��"	          (33) 
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The second member of the equation is our non-linear part. 

This is what justifies the following writing: 

�� − 2�"� + �t � = &�             (34) 

Applying the RDTM algorithm to equation (28) above, we 

have the following expression: 

�) + 1���+���� − 2�) + 1� �^�_Z�"��" + �t ����� = &����                    (35) 

Using the method of successive approximations and Picard's principle, we obtain the following algorithm: 

�) + 1���+�a ��� − 2�) + 1� �^�_Zc �"��" + �t ��a��� = &��a;����	                  (36) 

For e = 1 we have: 

�) + 1���+�� ��� − 2�) + 1� �^�_ZZ �"��" + �t ������ = &������  

Since, for the Picard’s principle, 

∀	∈ i	�i
z{Y?�	3e45Y�, &������ = 0, 

then: 

�) + 1���+�� ��� − 2�) + 1� �^�_ZZ �"��" + �t ������ = 0 (37) 

For ) = 0, we have: 

������ − 2 �^ZZ�"��" + �t ������ = 0  

Either: 

2 �^ZZ�"��" − ������ = �t ������          (38) 

From the homogeneous equation of (31) follows the solution: 

��W��� = mWY�e ]�X �` , mW	|	ℝ  

By analogy of previous calculations, the particular solution 

is: 

��a��� = maY�e ]�o �` , 							ma	|	ℝ  

By deriving the particular solution, substituting while 

taking into account the initial condition, the constant is 

obtained. Thus: 

������ = − �o Y�e ]�o �`         (39) 

For ) = 1, we have: 

�X� − 2 �^[Z�" = − �o ���  

Either: 2 �^[Z�" − �X� = − �qX Y�e ]�o �` 

The associated homogeneous equation is: 

2 �^[Z�" − �X	� = 0  

After all calculations are done, the particular solution of this 

step is:  

�X���� = �qX Y�e ]�o �`	              (40) 

�6?	) = 2  

By the same procedure, we determine �q����. 

3�q���� − 6 �^sZ�"��" + �t �X���� = 0  

Either 3�q���� − 6 �^sZ�"��" + �X�� Y�e ]�o �` 	= 0 

Thus 

3�q���� − 6 �^sZ�"��" = − �X�� Y�e ]�o �`  

The same hypotheses are used for the constants and the 

general solution of the homogeneous equation as in the 

previous cases. After all calculations made, which implies 

then the particular solution: 

�qa� ��� = − �qto Y�e ]�o �`          (41) 

For ) = 3, we have: 

8 �^vZ�"��" − 4�o	���� = �t �q����        (42) 

8 �^vZ�"��" − 4�o	���� = �q��X Y�e ]�o �`  

Either: 

�o���� = ���oo Y�e ]�o �`          (43) 

The sum of the terms gives: 

∑ �
1��� = Y�e ]14 �` − 14
≥0 Y�e ]14 �` + 132 	Y�e ]14 �` �2 	− 1384 Y�e ]14 �` �3 + 16144 Y�e ]14 �` �4 + ⋯       (44) 

∑ �������x� = Y�e ]�o �` �1 + ]− �o �` + �X! ]− �o �`X + �q! ]− �o �`q + �o! ]− �o �`o + ⋯�	           (45) 
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The sum of the problem is given by 

∑ �
1���
≥0 = Y�e ]14 �` Y�e b]− 14 �`d     (46) 

We check, then consequently, the exact solution is: 

���, �� = Y�e b�o �� − ��d          (47) 

3.3. Example 3 

Consider, for our third example, the following nonlinear 

equation [10] with its initial condition, given by the expression 

@�� − �"" − ��" + �" − � + �X = 0���, 0� = Y" 	    (48) 

To facilitate the understanding of the rest of the work, for 

the identification of the nonlinear part, the fundamental 

equation of the problem to be solved can be written in the 

form: 

�� − �"" + �" − � = ��" − �X	        (49) 

The equation can also be written as follows: 

�� − �"" + �" − � = &�          (50) 

With: &� = ��" − �X. 
As with the previous problems, if we apply the RDTM to 

equation (44), we obtain the following iteration formula: 

�) + 1���+���� − �[^��"��"[ + �^��"��" − ����� 	= &�����	 (51) 

We wish reiterate that, using the method of successive approximations and Picard's Principle to equation (45), we obtain the 

following algorithm: 

�) + 1���+�a ��� − �[^�c�"��"[ + �^�c�"��" − ��a��� = &��a;����	                      (52) 

The manipulation of the algorithm according to the of e and )	gives: 

For e = 1 we have: 

�) + 1���+�� ��� − �[^�Z�"��"[ + �^�Z�"��" − ������ = &������                      (53) 

Always: ��� 	 ∈ i, such that: &��� = 0 

The following expression is derived from this. 

�) + 1���+�� ��� − �[^�Z�"��"[ + �^�Z�"��" − ������ = 0                         (54) 

For ) = 0 

������ − �[^jZ�"��"[ + �^jZ�"��" − ������ = 0	    (55) 

With ���, 0� = Y", �^j�" = Y". Therefore: 

������ = Y"           (56) 

For ) = 1: 

2�X���� − �[^ZZ�"��"[ + �^ZZ�"��" − ������ = 0	     (57) 

After all the calculations, we gat: 

�X���� = �X Y"             (58) 

For ) = 2: 

We have the following equation 

3�q���� − �[^[Z�"��"[ + �^[Z�"��" − �X���� = 0	      (59) 

After substitution we have 

3�q���� − �X Y" + �X Y" − �X Y" = 0  

Either 

�q���� = �� Y"              (60) 

For ) = 3: 

We have the following equation: 

4�o���� − �[^sZ�"��"[ + �^sZ�"��" − �q���� = 0	     (61) 

After calculating the derivatives and substituting all 

expressions to equation (55), we have its solution: 

�o���� = �Xo Y"            (62) 

By the same process, the following terms are obtained. 

Passing to the sum of all the expressions obtained gives: 

�w9��, �� = ∑ ������� = ������� + ������� + �X����X9��� + �q����q + �o����o + ⋯  

Either: 

�w9��, �� = ∑ ������� = Y"�� + Y"�� + �X Y"�X9��� + �� Y"�q + �Xo Y"�o + ⋯                (63) 
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By passage to the limit of the truncated series, the 

sequence of expressions follows: 

∑ �
����)
≥0 = Y� ]1 + � + 12! �2 + 13! �3 + 14! �4 + ⋯ ` (64) 

∑ �
����)
≥0 = Y�Y�	            (65) 

Therefore, the exact solution of our problem is: 

���, �� = Y"+�	               (66) 

4. Conclusion 

The findings of this article which focused on the exact 

solution of nonlinear partial differential equations, show that 

calculus of the combination algorithm of the Reduced 

Differential Transform Method method and Picard's principle 

is fast and it results in exact analytical solutions. Determining 

the exact solutions for all these systems proves the efficiency 

of coupled algorithm. 

Obtaining exact solutions to all the problems posed, proves 

the effectiveness of the combination or coupling of the RDTM 

algorithm and Picard's principle. 
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