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Abstract: A normalized pneumonia mathematical model is formulated and analyzed to describe the transmission dynamics of 

pneumonia disease with a varying population size and in the presence of drug resistance threats. The main aim of the study is to 

formulate and analyze a pneumonia optimal control model that implements varied control strategies against antibiotic resistance 

threats and varying population size. The stability theory of differential equations and Pontryagin's Maximum Principle for an 

optimality system were employed to determine the crucial properties of the mathematical model. The basic reproduction number 

is determined using the Next generation matrix approach and the stability analysis for the disease-free and as well as for the 

endemic equilibrium are determined. The sensitivity indices of the effective reproduction number to the crucial parameter values 

are determined and ranked as per their impact on the transmission of pneumonia disease. We extend the model to an optimal 

control problem with four control strategies: disease prevention effort, treatment effort that minimize the sensitive and resistant 

strain and immunity control effort. The optimal control analysis of the adopted control efforts revealed that the combination of 

prevention and treatment, prevention and immunity control and a combination of all controls are the effective intervention 

strategies that result in a decrease in infections in the community. Numerical simulations are performed for a combination of 

other strategies and pertinent results were displayed graphically. 

Keywords: Streptococcus Pneumoniae, Effective Reproductive Number, Pontryagin's Maximum Principle, Optimal Control, 

Sensitivity Indices, Numerical Simulation, Optimal Control Analysis 

 

1. Introduction 

The main causative agent of bacterial pneumonia is known 

as Streptococcus Pneumoniae which is the most rampant 

community based acquired pneumonia globally [4]. 

Pneumonia prevalence has witnessed an increased rate in 

low-income compared to high-income nations with the 

highest vulnerability seen in minors aged between 0-5 years, 

the old, and individuals with underlying conditions like 

terminal illnesses or weak immunity [4, 12]. 

Pneumonia is widely known to be the greatest contributor to 

child death globally. Yearly, it is approximated to cause up to 

1.2 million deaths especially among children under 5 years of 

age, which amounts to an estimated 18% occurring in under 

five-year-old. Pneumonia has a large impact on children and 

communities globally with the highest and most profound 

incidences taking place in low-income continents like South 

Asia and sub-Saharan Africa [12, 7, 4]. Pneumonia bacteria 

are often sitting in a person's nose, mucus or throat and are 

mainly transmitted from one person to another through the 

following ways: Inhaling bacteria through the lungs, 

transmitted through flying droplets like mucus and saliva 

emerging due to a cough or sneeze and pneumonia can be 

transferred through blood with higher cases taking place 

during and slightly after birth [12, 4]. 

The features to note in a case of pneumonia infection are: 

increased episodes of breathing difficulties, constant cough, 

high fever and feeling chilly and lack of appetite. Severe cases 

in children lead to lower chest pain when inhaling and exhaling. 

Extremely severe scenarios lead to inability to eat or drink, loss 

of consciousness and convulsions see [12, 4]. Bacterial 

pneumonia can be easily treated in hospitals by administering 

prescribed antibiotic drugs to the patients. Pneumonia can be 
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prevented in a number of ways which include: immunization 

programs given to children between 0-5 years, providing good 

nutrition to children to help build their immunity and develop a 

defense mechanism for infectious diseases, addressing 

environmental contributors such as pollution of air with 

poisonous gases and dust particles [12]. 

The WHO 2013 Fact sheet indicates that pneumonia is the 

world's leader in causing child deaths, estimating 16% of all 

deaths of children under 5 years old, killing an estimated 2,400 

children per day in 2015 [12]. Globally, there exist 120 million 

cases of pneumonia per year in children under 5, with 

approximately 10% (14 million) progressing to severe cases. 

There were approximately 880,000 deaths from pneumonia in 

children under 5 years old in 2016 [12]. 

The emergence of antimicrobial resistance to treatment is 

viewed by many researchers to be one of the concerns, that is, a 

life threat to human health in the 21
st
 century. Antibiotic 

resistance is easily enhanced by the misuse and overdose of 

antibiotic drugs. Poor infection prevention and control strategies 

also contribute to antibiotic resistance. Intervention strategies can 

be taken at all levels of society to reduce the impact and limit the 

spread of resistance [13]. 

Over the years, pneumonia models have been formulated to 

describe the transmission dynamics of pneumonia disease. 

Notably, mathematical modelling has been a significant guide 

to the development and implementation of policy measures 

undertaken by health agencies to curb the transmission of 

infectious diseases, studies done by Assaad et al. [1], Huang et 

al. [6], Kizito and Tumwiine [8], Mbabazi et al. [9], Otoo et al. 

[15], Tilahun et al. [18-20] and Swai et al. [17] attempt to 

describe the transmission dynamics of pneumonia. Some 

studies have done optimal control analysis of intervention 

strategies applied to pneumonia transmission dynamics and its 

impact on disease control. From the reviews of the cited 

literature, few studies have assessed the dynamics of 

pneumonia using a varying population size in the presence of 

drug resistance threats. In addition to a varying population size, 

this study introduces a drug-resistant strain of pneumonia 

together with a drug-sensitive strain and we undertake an 

optimal control analysis of the model. 

The paper's main target is to formulate and analyze a 

pneumonia optimal control model that implements varied 

control strategies with antibiotic resistance threats and varying 

population size. The paper is organized as follows: Section 2 

was devoted to the formulation of a pneumonia model and 

indicates the parameters used. In Section 3, we study the 

model properties qualitatively and identify the key 

determinants that shape the dynamics. In section 4, we 

undertake the sensitivity analysis of the model parameters. In 

this section, we analyze the optimal control problem. Section 

5 analyzes the computational findings of the study using tables 

and graphs. Section 6 was solely used to draw conclusions and 

areas for further studies. 

2. Model Formulation 

The model has been designed as follows: Susceptible, �, an 

infected group which is sensitive to treatment, ��, an infected 

group which is anti-biotic resistant, �	  and a recovery, 
 , 

represents the vaccinated and recovered from infection who 

have waning immunity to the disease and progress to the 

susceptible at the rate � . Individuals are born into the 

community with the proportion of susceptible that are 

vaccinated as � (0 < � < 1) and we take the remaining are 

susceptible. We take that recruitment is by birth approximated 

by a rate �  with a varying population size. A susceptible 

individual is infected through contact with an infective drug 

sensitive individual, approximated by an average contact rate ��  or through contact with an infective drug resistant 

individual with an average contact rate �� ⋅ � is the natural 

death rate for all the groups, �� represents death rate due to a 

drug sensitive disease infection �� death rate due to disease 

infection from drug resistant group. � is the progression rate 

from infective but sensitive to treatment group to drug 

resistant group, � is the progression rate from drug resistant 

group to recovered group and � is the progression rate from 

infected group to recovered group due to treatment. The 

controls ��  represents a prevention effort, that protects 

susceptible individuals from contacting the disease, �� 

represents a treatment effort, that minimizes infection by 

treating drug sensitive infectious individuals, �� represents a 

treatment control effort, that minimizes infections by treating 

drug-resistant individuals and ��  represents an immunity 

effort, represents a reduction in the loss of disease immunity 

due to improved vaccination and treatment efficacy. We 

obtain the optimal control model problem of pneumonia as: 

���
�
���
� �! = (1 − �)�& + (1 − ��)�
 − (1 − ��) (��  )*+ + ��  ),+ - − ��
�)*�! = (1 − ��) (��  )*+ + ��  ),+ - − ����� − (� + � + ��)���),�! = ��� − ����	 − (� + ��)�	�.�! = ��& + ����� + ����	 − (1 − ��)�
 − �


                   (1) 

such that �� = /0, �� = /0Υ , where /  is the number of 

contacts contact rate, 0  is the possibility that a contact is 

effective to spread the disease and Υ is coefficient for the 

resistant strain transmission, with initial conditions, �(0) =�3, ��(0) = ��(3), �	(0) = �	(3)  and 
(0) = 
3  such that & = � + �� + �	 + 
  and that �, �, ��, ��, �, �, �, ��, ��, � 

are all positive constant parameters. 

Sum of the equations in the nonlinear system (1) gives 

�+�! = � − �& − ���� − ���	              (2) 

Normalizing the variables, 4 =  + , 5� = )*+ , 5	 = ),+  and 



 Applied and Computational Mathematics 2022; 11(5): 130-139 132 

 

6 = .
+  which gives the system, we still use 4 = �, 5� = �� , 5	 = �	  and 6 = 
 for convenience. 

��
�
��
� 
�! = (1 − �)� + (1 − ��)�
 − (1 − ��)(����� + ����	) − �� + ����� + ����	�)*�! = (1 − ��)(����� + ����	) − ����� − (� + ��)�� − ��� + ����� + �����	�),�! = ��� − ����	 − ���	 − ��	 + �����	 + ���	��.�! = �� + ����� + ����	 − (1 − ��)�
 − �
 + ����
 + ���	


              (3) 

System (3) can be reduced further by setting 6(7) = 1 − �(7) − ��(7) − �	(7), giving a sub-system, 

���
��� �! = (1 − �)� + (1 − ��)�(1 − �(7) − ��(7) − �	(7)) − (1 − ��)(����� + ����	) − �� + ����� + ����	�)*�! = (1 − ��)(����� + ����	) − ����� − (� + ��)�� − ��� + ����� + �����	�),�! = ��� − ����	 − ���	 − ��	 + �����	 + ���	�

      (4) 

3. Model Properties 

The zero-infection state, occurs when		�� = 0, �	 = 0, with � = �3, ��(3) = 0, �	(3) = 0 . Hence, the disease-free state 

solution becomes, 9:; = ((�<=)>?@@?> , 0,0-. 

Here, we determine the threshold parameter that governs 

the transmission of a disease, referred to as the effective 

reproduction number 
ABB. The Next Generation approach as 

shown in Van den Driessche and Watmough [21] states that, it 

is the spectral radius of the next generation matrix. This 

definition is given for the models that represent the spread of 

infection in a population. It is obtained by taking the largest 

(dominant) Eigen value, (spectral radius) of 

CDEFDGHI ∗ CDKFDGHI<�              (5) 

Using the Next Generation Matrix, we will consider only the 

infectious classes in the system of differential equations in (4): 

L�)*�! = (1 − ��)(����� + ����	) − ����� − (� + ��)�� − ��� + ����� + �����	�),�! = ��� − ����	 − ���	 − ��	 + �����	 + ���	�                (6) 

Applying 9:; = ((�<=)>?@@?> , 0,0- , the disease-free case. 

The effective reproduction number of the model system (1) 

yielded, 


ABB = M(N?>?OP)BQ?RBPSM(�<=)>?@S(T?R?>?OQ)(N?>?OP)(@?>)        (7) 

with 
3 = M(N?>?OP)BQ?RBPS(T?R?>?OQ)(N?>?OP) when � is zero. 

A stability analysis reveals that the disease-free state is 

locally asymptotically stable if 
ABB < 1 and unstable when 
ABB > 1. 

4. Sensitivity Analysis 

We determine the sensitivity analysis of the model to 

compute parameter values that will be helpful in determining 

their impact on the model transmission dynamics [11, 2]. 

Definition. The normalized forward sensitivity index of a 

variable, 
ABB, that depends differentially on a parameter, �, 

is defined as [2]: V=.WXX = D.WXXD= ∗ =.WXX 

We compute the sensitivity indices of 
ABB  using the 

estimated parameter values in Table 2. Thus, we obtain the 

following results in table 1: V=.WXX = D.WXXD= ∗ =.WXX =−1.018, V[. 

.WXX = 1.0001 and V\.WXX = 1.000. 

Table 1 shows the parameter values arranged from most to 

least sensitive. The most sensitive parameter is the vaccination 

coverage, �, and the least sensitive parameter is the waning 

rate, � of the disease. These findings reveal that, when the 

parameters Υ, 0, �, �  and /  are increased keeping other 

parameter values constant they increase the value of 
ABB 

hence, they increase the endemicity of the disease in the 

community as they have positive indices. While the 

parameters �, ��, �, �, �� and � decrease the value of 
ABB 

when they are increased while the other parameters are kept 

constant, this means, that they decrease the persistence of the 

disease as they have negative indices. 

Table 1. Sensitivity indices of 
ABB. 

Parameter ] ^ _ `a b c d `e f g h 

Sensitivity indices −1.018 1.0001 1.000 −0.5528 −0.2596 0.1874 −0.1316 −0.1010 0.0559 −0.0360 0.0248 
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5. Optimal Control of the Meningitis 

Model 

Epidemiologically, the concept of optimal control problem 

(3) seeks to minimize the transmission or number of new 

infections and reduce the cost of treatment and preventive 

measures as control strategies as in Fleming and Rishel [3], 

Pontryagin [16]. To achieve the optimal control levels, we 

define a control set o  that is Lebesgue measurable as: = M(��(7); ��(7); ��(7); ��(7)): 0 ≤ �� < 1; 0 ≤ �� <1; 0 ≤ �� < 1; 0 ≤ �� <  1; 0 ≤ 7 ≤ 7Br . The objective 

functional s that can be used to achieve this is defined as: 

s = minwQ,wP,wx,wy  {  !X3 (|��� + |��	 + }���� + }���� + }���� + }����)                     (8) 

subject to the system of differential equations (1) with |�, |�, }�, }� , }�  and }�  representing the positive weight 

constants to help balance the terms in the integral to avoid the 

dominance of one over another as in Grassly and Fraser [5]. 

They serve as the balancing cost factors in the optimal model. 

The terms |��� and |��	  are costs incurred with infections in 

the human population. The quadratic functions: }���� is the 

cost associated with prevention strategies, }���� is the costs 

incurred when treating drug senitive infectious individuals, }���� is the costs emanating from in the treatment of infected 

humans who have developed an antibiotic resistant bacterium 

and }���� is a reduction in the loss of disease immunity due to 

improved vaccination and treatment efficacy efforts. The 

model controls are bi-linear combination of �~�(7), (5 =1,2,3,4). The quadratic form is applied since the cost are 

nonlinear in nature. We target to minimize the number of 

infectives (drug sensitive and resistant) and the costs of 

treating the disease. 

We seek to determine the optimal functions; 

(��∗(7), ��∗(7), ��∗(7), ��∗(7)): s(��∗, ��∗ , ��∗ , ��∗) = �5� ��(wQ,wP,wx,wy)wF ∈ o�                    (9) 

with o = �(��, ��, ��, ��): 0 ≤ �~ < 1; 5 = 1,2,3,4; 0 ≤ 7 ≤ 7Br being the control set. 

Next, we determine the Lagrangian function; 

�(��; �	; ��; ��; ��; ��; 7) = |��� + |��	 + }���� + }���� + }���� + }����                   (10) 

We employ the Pontryagin's Maximum Principle which provides the necessary and sufficient conditions to be satisfied by an 

optimal problem as in Fleming and Rishel [3], Pontryagin [16]. The principle changes the system of differential equations in (3) 

and equation (8) into a minimization problem point-wise Hamiltonian (H), with respect to (��; ��; ��; ��). 
�(�, �� , �	 , 
, 7) = �(��; �	; ��; ��; ��, ��; 7) + �� � �! + �� �)*�! + �� �),�! + �� �.�!                  (11) 

Substituting the equations in system (3), the Hamiltonian becomes: 

���
��� = ���� + ���	 + ����� +����� + ����� + �����+��M(1 − �)� + (1 − ��)�
 − (1 − ��)(����� + ����	) − �� + ����� + ����	S+��M(1 − ��)(����� + ����	) − ����� − (� + ��)�� − ��� + ����� + �����	S+��M��� − ����	 − ���	 − ��	 + �����	 + ���	�S+��M�� + ����� + ����	 − (1 − ��)�
 − �
 + ����
 + ���	
S

               (12) 

with ��, ��, ��, �� being the the adjoint variables. 

Using the relation; 

��F�! = − D�D�̇(!)                                         (13) 

By differentiation of the function � with respect to (w.r.t) � yields; 

��Q�! = − D�D (!) = −M−��(1 − ��)(���� + ���	) − ��� + ������ + �����	 + ��(1 − ��)(���� + ���	)S= ��(1 − ��)(���� + ���	) + ��� − ������ − �����	 − ��(1 − ��)(���� + ���	)= (1 − ��)(���� + ���	)(�� − ��) + ��� − ������ − �����	          (14) 

Finding − D�D�̇(!) of the Hamiltonian function w.r.t (�, ;, �� , �	 , 
) and obtain the following adjoint or co-state variables as 

solutions of adjoint systems; 
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��
��
��
���Q

�! = (1 − ��)(���� + ���	)(�� − ��) + ��(� − ���� − ���	)��P�! = −�� + (1 − ��)���(�� − ��) + ��(��� + � + �� + �) − ����� − ��(2���� + ���	)��x�! = −�� + (1 − ��)���(�� − ��) + ���(�� − ��) + ��(� + �� − ���� − 2���	) − ������ − ����
��y�! = �(�� − ��) + ��(� − ���	)
    (15) 

With transversality conditions �~�7B� = 0; for 5 = 1,2,3,4. 

We combine the Pontryagin's Maximum Principle and the existence concept of the optimal control as stated by Fleming and 

Rishel [3], Pontryagin [16]. In addition, we characterize the optimal model by solving; 

D�DwF = 0, with �~ = �~∗, 5 = 1,2,3, … , �.                                 (16) 

we obtain the control set (��∗; ��∗ ; ��∗ , ��∗) by using equation (16) as follows 

D�DwQ = 2}��� + ��(���� + ���	)� − ��(���� + ���	)�  

Thus, ��∗ = (�P<�Q)(BQ)*?BP),) ∗��Q  

We differentiate the Hamiltonian function obtained and apply equation (16), to get the control set (��∗; ��∗ ; ��∗ ; ��∗) as follows; 

���
�
�����

∗ = (�P<�Q)(BQ)*?BP),) ∗��Q��∗ = (�P<�y)T)*∗��P��∗ = (�P<�y)N),∗��x��∗ = (�Q<�y)@.∗��y

                                     (17) 

Theorem 1. The optimal control vector (��∗(7); ��∗(7); ��∗(7); ��∗(7)) that maximize the objective functional, J over control set o, given by; 

���
�
�����

∗(7) = max �0,min (1, (�P<�Q)(BQ)*?BP),) ∗��Q -�
��∗(7) = max �0,min (1, (�P<�y)T)*∗��P -�
��∗(7) = max �0,min (1, (�P<�y)N),∗��x -�
��∗(7) = max �0,min (1, (�Q<�y)@.∗��y -�

	                            (18) 

where ��, ��, ��, �� are the solutions of equation (12) and (15). 

Writing using standard control arguments involving bound on the controls, we conclude that; 

��∗ = L0 if	∅� ≤ 0,∅� if	0 < ∅� < 1.1 if	∅� ≥ 1. , ��∗ = �0 	if	∅� ≤ 0,∅� 	if	0 < ∅� < 1.1 	if	∅� ≥ 1. , ��∗ = L0 if	∅� ≤ 0,∅� if	0 < ∅� < 1.1 if	∅� ≥ 1.  and ��∗ = �0 if	∅� ≤ 0,∅� if	0 < ∅� < 1.1 if	∅� ≥ 1.   

where, ∅� = (�P<�Q)(BQ)*?BP),) ∗��Q , ∅� = (�P<�y)T)*∗��P , ∅� = (�P<�y)N),∗��x  and ∅� = (�Q<�y)@.∗��y  

Table 2. Description of variables and parameters of the pneumonia model. 

Parameter Description Value Source � Recruitment rate 0.1  [22] �� critical vaccination proportion 0.5170 Computed � Immunity Wanning rate 0.0025 [19] / contact rate 1 − 10 [14, 8] 0 probability that a contact is effective to cause infection 0.89 − 0.99 [14, 8] Υ Transmission coefficient for the carrier 1.2 [18, 19] � Natural death rate 0.00000456621 [8, 19] � progression rate from infected to recovered group 0.0714 [10, 8] � progression rate from drug-sensitive to resistant group 0.0714l [8] � progression rate from drug-resistant group 0.0714 [17] 
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Parameter Description Value Source 

�� death rate due to a drug-sensitive disease infection 0.3 [19, 6] �� death rate due to a drug-resistant disease infection 0.2 Estimated 

The optimality system to be analyzed/simulated is obtained from the optimal control system (the state system) and the adjoint 

variable system by incorporating the characterized control set and initial and transversal conditions. 

��
��
��
�
��
��
��
� 
�! " #1 $ �%� ' #1 $ ��%�
 $ #1 $ ��%#����� ' ����	% $ �� ' ����� ' ����	
�)*
�! " #1 $ ��%#����� ' ����	% $ ����� $ #� ' ��%�� $ ��� ' ����� ' �����	
�),
�! " ��� $ ����	 $ ���	 $ ��	 ' �����	 ' ���	�
�.
�! " �� ' ����� ' ����	 $ #1 $ ��%�
 $ �
 ' ����
 ' ���	

��Q
�! " #1 $ ��%#���� ' ���	%#�� $ ��% ' ��#� $ ���� $ ���	%
��P
�! " $�� ' #1 $ ��%���#�� $ ��% ' ��#��� ' � ' �� ' �% $ ����� $ ��#2���� ' ���	%
��x
�! " $�� ' #1 $ ��%���#�� $ ��% ' ���#�� $ ��% ' ��#� ' �� $ ���� $ 2���	% $ ������ $ ����

��y
�! " �#�� $ ��% ' ��#� $ ���	%

	      (19) 

6. Computational Results and Discussion 

Using a combination of controls such as: one control only 

with increasing time, two controls against time, and all control 

strategies against time, then we analyze and compare the 

numerical results from the simulations. Given that the state 

system (3) has initial conditions and the adjoint systems (15) 

have final conditions, we employ the forward 4th  order 

Runge-Kutta method and solve the adjoint system using a 

backward 4!�  order Runge-Kutta method. We used |� "25; |� " 25; }� " 4; }� " 3; }� " 5 and }� " 6 as weight 

constants for the pneumonia model with optimal control 

analysis. In addition, we used �#0% " 0.5; ��#0% "0.25; �	#0% " 0.15; 
#0% " 0.1  as initial values and �~�7B� " 0, 5 " 1,2,3,4. 

  

Figure 1. Graphs displaying pneumonia infection dynamics with and without controls: prevention only. 

We analyze the pneumonia model by applying prevention 

efforts. In this case, we optimize the prevention #�� � 0% 
while equating the treatment controls #��  and ��%  and 

immunity efforts #��% to zero. From Figure 1(a, b), we see a 

sharp decrease of sensitive and resistant strain population due 

to the implementation of prevention interventions. This is due 

to the fact that prevention reduces the rate of recruitment of 

persons to the sensitive as well as resistant compartments. 

This epidemiologically implies that enhanced prevention 

implementation can wipe out the burden of pneumonia disease 

within a short time interval compared to a case without 

controls. 
 



 Applied and Computational Mathematics 2022; 11(5): 130-139 136 

 

  

Figure 2. Graphs displaying pneumonia infection dynamics without and with controls: prevention, treatment and immunity control. 

We employ all the four controls ��, ��, ��  and ��  to 

optimise the objective function s. From Figure 2(a, b), we 

observe that the fractions of the sensitive infectious and 

resistant infectious populations decrease exponentially as time 

increases to achieve a zero-infection scenario. This implies 

that pneumonia disease can be curbed efficiently when all 4 

controls are applied as intervention strategies. However, as to 

whether this strategy is cost effective compared to other 

strategies requires a cost-effective analysis of the considered 

model to occur. 

  

Figure 3. Graphs displaying pneumonia infection dynamics without and with controls: prevention and treatment. 

The implementation of prevention control ��  and 

treatment controls �� and �� are used to optimize s while 

we set the immunity control �� to zero, and Figure 3 (a, b) 

displays the output obtained. Clearly, the number of sensitive 

infectious and resistant infectious populations reduces within 

a relatively short period of time. Implying that this strategy is 

capable of efficiently wiping out the disease from the 

community within known timelines. 

Figures 4(a) and 4(b) display an optimal treatment and 

immunity control case scenario. The task is to optimize s 

using the prevention control ��  and immunity control �� 

while the treatment controls ��, �� is equated to zero. Figure 

4 demonstrates that due to the control strategies, the 

population of drug sensitive infective individuals #��%  and 

drug resistant infective individuals #�	% displays a significant 

impact on decreasing the number of infectives of both strains, 

with also a notable impact on the timing of wiping out the 

infection from the community. 
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Figure 4. Graphs displaying pneumonia infection dynamics without and with controls: prevention and immunity control. 

  

Figure 5. Graphs displaying pneumonia infection dynamics without and with controls: treatment and immunity control. 

  

Figure 6. Graphs displaying pneumonia infection dynamics without and with controls: treatment only. 
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Figures 5(a) and 5(b) shows the impact of optimal treatment 

and immunity control. We optimize the objective function s 
using the treatment controls ��, �� and immunity control �� 

while the prevention control �� is equated to zero. Figure 5(a) 

displays that the sensitive strain infection will rise to attain a 

peak with a little notable decrease noted after attaining a peak. 

The infections display a higher peak compared to the case 

without controls. Figure 5(a) displays that the control strategy 

has little notable effect in decreasing the resistant strain 

infections in the community. This implies that the strategy 

might not be effective in eradicating a highly infectious 

disease like pneumonia. 

Figures 6(a) and 6(b) shows the impact of treatment. We 

optimize the objective function s using the treatment controls ��  and ��  while immunity control ��  and the prevention 

control �� are set to zero. From Figure 6, we observe that the 

controls have little impact reducing the drug-sensitive and 

drug-resistant strain infections with also little effect on 

influencing the timing to eradicate the diseases. 

7. Conclusions 

In this paper, we develop and analyze an optimal control 

problem for a pneumonia mathematical model to effectively 

describe the transmission of pneumonia that optimizes control 

efforts and perform qualitative and quantitative optimal 

control analysis of the model. The pneumonia model was 

robustly analyzed to gain insights into its dynamics. The 

pneumonia model has a locally stable disease-free state when 

the basic reproduction number 
ABB < 1. The model has a 

unique endemic equilibrium whenever 
ABB > 1. The study 

reveals that vaccination proportion value and infection contact 

rate are the most sensitive parameter values that possess a 

higher impact in shaping the dynamics of pneumonia disease. 

Focusing on pneumonia intervention strategies, we observe 

from Figures 1-4 that the presence of prevention efforts as a 

control variable has a remarkable significance in decreasing 

and probably eradicating the infectious infective strains in the 

population with notable impact on reducing the duration of 

wiping infection in the community. Administration of both 

treatment and immunity control or independent 

implementation has displayed no significant effect in 

decreasing infections in the community. However, a 

combination of these efforts with prevention efforts displays a 

significant reduction of infections in the community. In 

addition, there is a need for further studies to determine the 

most cost-effective control strategy as shown in Figures 1-4, 

considering that the worst hit continents have limited 

resources and weak challenged economies. The findings of 

this study can be continued by future research studies to 

include cost-effective analysis of the control strategies and 

formulation of delay differential equations to take care of the 

duration between getting an infection and showing visible 

symptoms. 
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