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Abstract: Meningococcal meningitis is a fatal and scary highly infectious disease especially in the African meningitis disease 

belt and globally, its every community’s desire to wipe out meningitis disease by considering its prevention and control 

mechanisms. The paper formulates and analyzes a Meningococcal meningitis epidemic model that describes the spreading 

mechanisms of meningitis in a community with varying population. The stability analysis approach of non-linear systems is used 

to distinguish the properties of an epidemic deterministic compartmental model. The effective threshold reproductive value is 

determined by Jacobian approach and the stability study for the zero disease and endemic states are determined. Sensitivity 

indices analysis of the effective reproductive number to the crucial parameter values are established and rated accordingly. Using 

Pontryagin's approach to an optimal problem, the model was extended to include the following four control intervention 

measures: effort to prevent a disease infection by providing education needed, efforts to treat that minimizes sensitive and 

resistant strains and immunity control effort. The optimal control study of the applied control intervention efforts reveals that the 

use of prevention techniques and treatment efforts leads to a larger decrease of infections, thus becoming are the best intervention 

control strategy to eliminate the meningitis disease. Numerical analysis study was done for a combination of other strategies and 

main results are displayed using graphs. 

Keywords: Meningococcal Meningitis, Effective Reproductive Number, Pontryagin's Principle,  

Optimal Intervention Strategy, Sensitivity Indices, Numerical Simulation 

 

1. Introduction 

The highly infectious meningitis disease emanates from the 

bacterium Neisseria meningitidis (n.m) which is a bacterial 

disease that is frequently occurring in the African belt. 

Meningococcal meningitis disease has been reported globally. 

Moreover, persistent recurrence of meningitis epidemics in 

the expansive region of sub-Saharan Africa [23], called the 

"meningitis belt" which consists countries ranging from 

western Africa to eastern Africa [12]. Meningococcal disease 

is life-threatening and causes high cases of child deaths in the 

low-income economies like Africa with an estimated 400 

million cases yearly [22, 12]. Meningococci is mainly spread 

from one individual to another through excretions resulting 

from sneezing by infectious persons with asymptomatic and 

symptomatic stages of meningococcal disease [10]. The 

symptoms visible in bacterial meningitis infected individual 

include: sudden onset of fever, severe headache accompanied 

by a stiff neck, nausea, vomiting, eye sensitivity to light 

(photophobia) etc. [11, 14]. The discovery of vaccines 

(MACV) introduced to the disease affected regions in Africa 

has resulted to a remarkable reduced prevalence of n.m in the 

region with high possibility of eradication of Neisseria 

meningitidis. Health agencies have projected that with a high 

vaccination coverage rate for persons with ages 1-29 years 

(i.e., an estimated 315 million young people), then 

meningococcal disease will be eradicated from meningitis belt 

region of Africa [12, 14]. 

Over the years, the development of epidemic models has 

been used to explain transmission growth of the infectious 

meningitis disease. Notably, mathematical modelling has been 

significant guide to development and implementation of 

policy measures undertaken by health agencies to curb the 



141 Timothy Kiprono Yano et al.:  Optimal Control Analysis of Meningococcal Meningitis Disease with  

Varying Population Size 

transmission of infectious diseases, just to mention a few 

studies by [1, 3, 4, 8-10, 15, 19] which attempt to explain the 

transmission modes of the n.m infectious disease agent. 

Similarly, a number of research findings on optimal control 

analysis of intervention strategies applied to n.m spreading 

ways and considering the effect on disease transmission has 

been undertaken by some researchers, although different 

studies had unique focus and targets such as studies by [2, 17, 

20, 22]. For instance, a study by Blyuss formulated and did 

extensive work on a mathematical model that attempted to 

describe the transmission and intervention efforts of 

Meningitis infection [4]. Vareen [19] assessed the impact of 

vaccination program on meningitis transmission in the 

community. Clearly, a few studies have assessed the dynamics 

of meningitis using a varying population size. In addition to a 

varying population size, this study introduces a drug resistant 

strain of meningitis together with a drug sensitive strain and 

undertake a study on effective intervention control efforts. 

2. Meningitis Model Formulation 

The model has 5 compartments as follows: A susceptible, �, 

drug sensitive infectives, �, drug resistant infectives, �� and 

recovery group, � . The population proportion, p was 

estimated to have gotten the vaccine before entry to the 

population and take (1 − �) as susceptible to the infection 

with recruitment rate, 
 and waning rate, �. The susceptible 

individual gets infection through contact with drug sensitive 

infective or through contact with drug resistant infectives with 

infection rate of � = � ��(�)����(�)� � , where � = ��  is the 

effective contact rate, � is the rate of getting infected, � is 

the possibility of an interaction to be effective in spreading 

infection and Υ is estimated spread coefficient for the drug 

resistant. �  being deaths occurring due to natural 

circumstances, �� represents deaths due to a drug sensitive 

disease infection while �� is the deaths caused by infection 

from drug resistant group. �  is the progression rate from 

infective but sensitive to treatment group to drug resistant 

group,   is the progression rate from drug resistant group to 

recovered group and ! is the progression rate from sensitive 

infectives to recovered group due to treatment. "� represents 

a prevention control measure, that protects individuals from 

catching the disease. "� are efforts to treat infected persons, 

that minimizes infection by treating drug sensitive infective 

individuals. "#  represents treatment control attempt, that 

minimizes infections by treating the drug resitant individuals. "$ is an immunity effort, that signifies a decrease in waning 

rate as a result of high vaccination implemented and efficacy 

of vaccines. The resulting meningitis model nonlinear system 

is given by; 

%&
'
&(
)*)� = (1 − �)
+ + (1 − "$)�� − (1 − "�)�� − ��)�)� = (1 − "�)�-� − "�!� − (� + � + ��)�)��)� = (1 − "�)�(1 − -)� + �� − "# �� − (� + ��)��)�)� = .
+ + "�!� + "# �� − (1 − "$)�� − ��

 (1) 

with initial conditions �(0) = �0, �(0) = �0, ��(0) = ��0 

and �(0) = �0  with + = � + � + �� + � . A sum of the 

model equations in (1) gives, 

)�)� = (
 − �)+ − ��� − ����           (2) 

We normalize the variables, 2 = *� , 3 = �� , 4� = ���  and 4 = �� such that, the new system gives; 

%&
'
&(
)5)� = (1 − �)
 + (1 − "$)�4 − 6(1 − "�)�(3 + 4�) + 
72 + ��23 + ��24�)8)� = (1 − "�)-�(3 + Υ4�)2 − ("�! + � + 
 + ��)3 + ��3� + ��34�)9:)� = (1 − "�)(1 − -)�(3 + Υ4�)2 + �3 − ("# + 
 + ��)4� + ��34� + ��4��)9)� = .
 + "�!3 + "# 4� − 6(1 − "$)� + 
74 + ��34 + ��4�4

                (3) 

The system (3) can be reduced by setting 4 = 1 − 2 − 3 − 4�, which yileds a subsystem, 

%&'
&()5)� = (1 − �)
 + (1 − "$)�(1 − 2 − 3 − 4�) − 6(1 − "�)(�(3 + Υ4�) + 
)2 + ��23 + ��24�)8)� = (1 − "�)-�(3 + Υ4�)2 − ("�! + � + 
 + ��)3 + ��3� + ��34�)9:)� = (1 − "�)(1 − -)�(3 + Υ4�)2 + �3 − ("# + 
 + ��)4� + ��34� + ��4��

	         (4) 

3. Model Properties 

The feasible region of model variables in (4) in ℝ�#  are confined in; 

Ω = >(2, 3, 4�) ∈ ℝ�# : 0 ≤ 2 + 3 + 4� + 4 ≤ 1B                            (5) 

so that the Meningitis model is epidemiologically and mathematically well posed. 

The model was analyzed qualitatively in the set Ω. In the absence of Meningitis infection, system gives a disease-free state, CDE = (20, 30, 4�0) = �(�FG)H�IH�I , 0,0�. The Jacobian, JKLM of model equations in (4) at DFE; 
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JKLM = N−(
 + �) −� − �20 + ��20 −� − �Υ20 + ��200 ��20 − (! + � + 
 + ��) ��Υ200 (1 − �)�20 + � (1 − �)�Υ20 − ( + 
 + ��)O               (6) 

We compute |JKLM − Q�| = 0, by applying the Jacobian matrix approach gives the effective reproduction number, �R: 

�S = TU((�FG)H�I)(H�I)(V�W�H�XY) + U�(�FT)((�FG)H�I)(H�I)(Z�H�X[) + WTU�((�FG)H�I)(H�I)(V�W�H�XY)(Z�H�X[)                  (7) 

By applying the findings in [20], the result was found to be. 

Theorem 1. The DFE of the model (4), given by �R, is 

locally asymptotically stable if �R < 1 , and unstable if �R > 1. 

The Global stability study reveals that the maximum 

invariant set contained in the set >(2, 3, 4�) ∈	Ω: ))̂� = 0_, with 

the Lyapunov function ` = ( + 
 + ��)3 + (! + � + 
 +��)Υ4� , is the disease-free equilibrium. Global asymptotic 

stability for DFE was determined by using Lasalle-Lyapunov 

theorem �R < 1. 

4. Sensitivity Analysis of Model 

Parameters 

We determine the sensitive parameters of the model by 

computing their indices that will be helpful in determining 

their impact on the model transmission dynamics [5]. 

Definition. In [5] the normalized forward sensitivity index 

of a parameter, �S, with respect to a parameter, �, is given by, aU�b = c�bcU ∗ U�b . The sensitivity indices of �S  were 

determined using the parameter values available in Table 2. 

Table 1. Analysis of sensitivity values of �S. 

Variables Variable description Sensitivity indices � Infection rate 1.006 � vaccinated proportion −0.9410 Υ transmission coefficient 0.6346 
l recruitment rate −0.4072   
progression rate from resistant to 

recovered 
−0.28201 � loss of immunity 0.2702 ! 

progression rate from sensitive to 

recovered 
−0.2701 - Sensitive infective proportion −0.2197 �� death rate due to resistant strain −0.2115 �� death rate due to sensitive strain −0.1367 � 

progression rate from sensitive to 

resistant strain 
0.04394 

Table 1 above displays the computed sensitivity values of 

�R for formulated meningitis model. The indices have been 

aligned from the highest values to the lowest values in terms 

of their sensitivity index. The highest impact of all the 

parameters was found to be from the infection rate �, closely 

followed by vaccinated proportion at birth, p  and then 

resistant strain transmission rate (Υ) and recruitment rate (
) 
follow, while the lowest impact was witnessed in the 

progression rate from sensitive to resistant strain, � . From 

Table 1, if the parameters �, Υ, � and �  are increased while 

the rest are held steady, the computational value of �R rises. 

This implies, the parameter's increase the persistence of the 

meningitis disease in the community since they possess 

positive sensitivity indices. Also, the parameters �, 
,  , !, -, �� and �� decreases the numerical value of �R 

when it rises while holding steady the rest of the values. Thus, 

it reduces the persistence of the infection due to presence of a 

negative index. 

5. Optimal Control of the Meningitis 

Model 

The optimal intervention techniques of the system (1) are 

incorporated. Its significance is to identify the better control 

approaches which may contribute more to the elimination the 

meningitis infection in the community. 

On incorporating time dependent control parameters, "�, "�, "#  and "$  in meningitis model, giving the optimal 

control model problem of meningitis described by system (3). 

Epidemiologically, the idea of optimality analysis 

endeavors to reduce the spread of an infectious disease, 

minimize replication of infections and decrease costs incurred 

while treating and providing prevention measures as 

elaborated in Pontryagin [16], Fleming & Rishel [6]. To 

achieve the optimal control levels, define a control set o that 

is Lebesgue measurable as: = >("�(p); "�(p); "#(p); "$(p)): 0 ≤ "� < 1; 0 ≤ "� <1; 0 ≤ "# < 1; 0 ≤ "$ <	1; 0 ≤ p ≤ rB . Optimal objective 

function J is defined as: 

J = minvY,v[,vw,vx  z  �{0 (|�3 + |�4� + |#"�� + |$"�� + |}"#� +|~"$�)	                      (8) 

With respect to the formulated equations in (1) with |�, |�, |#, |$, |}  and |~  representing the positive weight 

values to help to moderate the variables. They serve as the 

balancing cost factors in the optimal model. |�3, |�4� ; represent the costs associated with infective 

human population. 

|#"�� ; represents the cost associated with prevention 

strategies of the susceptible population (2). |$"�� ; represents the costs incurred when treating drug 

senitive infectious individuals (3). |}"#� ; represents the costs incurred when treating drug 

resistant infectious individuals (4�) . The costs emanating 
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from in the treatment of the infected humans who have 

developed an antibiotic resistant bacterium. |~"$�; represents the costs incurred in immunity control to 

prevent loss of immunity by recovered individuals (r). p�; This is the duration that an intervention strategy has taken. |�3 + |�4�; is linear and represents the cost incurred due 

to transmission of an infection. |#"�� + |$"�� + |}"#� + |~"$�; is a quadratic form function 

that represents costs incurred due to provision of control 

intervention techniques [7]. 

The model controls are bi-linear combination of "8�(p), (3 = 1,2,3). The quadratic form is applied because in 

nature costs are not linear. The goal is to decrease the 

replicative dynamics of infections (drug sensitive and resistant) 

and treating cost of the disease. 

We seek to determine the optimal functions; 

("�∗(p), "�∗(p), "#∗(p), "$∗(p)): J("�∗, "�∗ , "#∗ , "$∗) = min ��(vY,v[,vw,vx)v� ∈ o_                  (9) 

where o = �("�, "�, "#, "$): 0 ≤ "8 < 1; 3 = 1,2,3,4; 0 ≤ p ≤ p�� is the control set of the model. 

The Lagrangian function; 

�(3; 4�; "�; "�; "#; "$; p) = |�3 + |�4� + |#"�� + |$"�� + |}"#� +|~"$�                (10) 

The Pontryagin's approach sets out the needed and sufficient thresholds to be satisfied by an optimal problem [16, 6]. The 

principle changes the system of differential equations in (1) and system (8) into a Hamiltonian (H), with controls ("�; "�; "#; "$). 
�(2, 3, 4� , 4, p) = �(3; 4�; "�; "�; "#; "$; p) + Q� )5)� + Q� )8)� + Q# )9�)� + Q$ )9)�               (11) 

Substituting the equations in system (1) the Hamiltonian becomes: 

%&
'
&(� = |�3 + |�4� + |#"�� +|$"�� + |}"#� + |~"$�+Q��(1 − �)
 + (1 − "$)�4 − 6(1 − "�)�(3 + 44�) + 
72 + ��23 + ��24��+Q�>(1 − "�)-�(3 + 44�)2 − ("�! + � + 
 + ��)3 + ��3� + ��34�B+Q#>(1 − "�)(1 − -)�(3 + Υ4�)2 + �3 − ("# + 
 + ��)4� + ��34� + ��4��B+Q$�.
 + "�!3 + "# 4� − 6(1 − "$)� + 
74 + ��34 + ��4�4�

             (12) 

with Q�, Q�, Q#, Q$ being the the adjoint variables. 

Using the relation; 

)��)� = − c�c�̇(�)                                              (13) 

Differentiation of the Hamiltonian, H gives; 

)�Y)� = − c�c5(�) = −� −Q�(1 − "�)�(3 + Υ4�) − Q�
 +Q�(��3 + ��4�) + Q�(1 − "�)-�(3 + Υ4�)�= (1 − "�)�(3 + Υ4�)(Q� − -Q�) + Q�(
 − ��3 − ��4�)                           (14) 

Computing − c�c�̇(�) of the Hamiltonian, H which gives the adjoint variables stated below; 

%&&
'
&&(
)�Y)� = (1 − "�)�(3 + Υ4�)(Q� − -Q�) + Q�(
 − ��3 − ��4�))�[)� = −|� + (1 − "�)�2λ − -Q� − (1 − -)Q# − ��� + Q�� − Q#� − Q$"�!)�w)� = −|� + (1 − "�)�Υ2λ − ��� + Q#� − Q$"# )�x)� = (1 − "$)�(Q$ − Q�) + Q$(
 − ��3 − ��4�)

               (15) 

where λ = Q� − -Q� − (1 − -)Q#, � = Q�2 + 2Q�3 + Q#4� + Q$4, � = Q�2 + Q�3 + 2Q#4� + Q$4,� = "�! + � + 
 + �� −��4�  and � = "# + 
 + �� − ��3 
such that Q86p�7 = 0; with 3 = 1,2,3,4. 

Combining the Pontryagin's approach of the optimal problem as stated by Pontryagin [16] and characterizing the optimal 

model by solving; 

c�cv� = 0,	with	"8 = "8∗, 3 = 1,2,3, … , �.                                  (16) 

we obtain the control set ("�∗; "�∗ ; "#∗ ; "$∗) by using equation (16) as follows 



 Applied and Computational Mathematics 2022; 11(5): 140-149 144 

 

c�cvY = 2|#"� + Q��(3 + Υ4�)2 − Q�-�(3 + Υ4�)2 − Q#(1 − -)�(3 + Υ4�)2  

Thus,  

"�∗ = (�w(�FT)�T�[F�Y)U�8����7���w   

We differentiate the Hamiltonian function obtained and applying equation (16), to get the control set ("�∗; "�∗ ; "#∗) as follows; 

%&&
'
&&("�

∗ = ((�FT)�w�T�[F�Y)U�8�����5∗��w"�∗ = (�[F�x)V8∗��x"#∗ = (�wF�x)Z9�∗���"$∗ = (�YF�x)I9∗���

                                  (17) 

Theorem 2. The optimal control vector ("�∗(p), "�∗(p), "#∗(p), "$∗(p)) that maximize the objective functional, J over control set o, given by; 

%&
&'
&&
("�∗(p) = ��� �0,min �1, ((�FT)�w�T�[F�Y)U�8�9���5∗��w ��
"�∗(p) = max �0,min �1, (�[F�x)V8∗��x �_
"#∗(p) = max �0,min �1, (�wF�x)Z9�∗��� �_
"$∗(p) = max �0,min �1, (�YF�x)I9∗��� �_

                        (18) 

where Q�, Q�, Q#, Q$ are the solutions of equation (12) and (15). 

Writing in terms of bounds of the control variables gives; 

"�∗ = �0 	if	Θ� ≤ 0,Θ� 	if	0 < Θ� < 1,1 	if	Θ� ≥ 1.  

"�∗ = �0 	if	Θ� ≤ 0,Θ� 	if	0 < Θ� < 1,1 	if	Θ� ≥ 1.  

"#∗ = �0 	if	Θ# ≤ 0,Θ# 	if	0 < Θ# < 1,1 	if	Θ# ≥ 1.  

and 

"$∗ = �0 if	Θ$ ≤ 0,Θ$ if	0 < Θ$ < 1,1 if	Θ$ ≥ 1.  

with, 

Θ� = 6(�FT)�w�T�[F�Y7U�8�¢��7�5∗��w ,  

Θ� = (�[F�x)�∗
��x , Θ# = (�wF�x)Z9�∗��� 	and	Θ$ = (�YF�x)I9∗���   

The resulting optimality system to be simulated is given as follows:  
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%&
&&&
&'
&&&
&&
()5)� = (1 − �)
 + (1 − "$∗)�4 − 6(1 − "�∗)�(3 + Υ�) + 
72 + ��23 + ��24�)8)� = (1 − "�∗)-�(3 + 4�)2 − ("�∗! + � + 
 + ��)3 + ��3� + ��34�)9�)� = (1 − "�∗)(1 − -)�(3 + 4�)2 + �3 − ("#∗ + 
 + ��)4� + ��3� + ��4��)9)� = .
 + "�∗!3 + "#∗ 4� − 6(1 − "$∗)� + 
74 + ��34 + ��4�4)�Y)� = (1 − "�∗)�(3 + 4�)(Q� − -Q�) + Q�(
 − ��3 − ��4�))�[)� = −|� + (1 − "�∗)�2(Q� − -Q� − (1 − -)Q#) − ��� + Q�� − Q#� − Q$"�∗!)�w)� = −|� + (1 − "�∗)�Υ2(Q� − Q�- − Q#(1 − -)) − ��� + Q#� − Q$"#∗ )�x)� = (1 − "$∗)�(Q$ − Q�) + Q$(
 − ��3 − ��4�)

	             (19) 

with conditions Q86p�7 = 0, where 3 = 1,2,3,4. and initials being 	s(0) = 20, 3(0) = 30, 4�(0) = 4�0 and 4(0) = 40. 

6. Numerical Simulations 

Numerical solution of the model equations in (1) are done together with the optimality system by employing given values in 

Table 2 to perform the analysis. 

The following estimates were used; |� = 300;|� = 150;|# = 2;|$ = 2;|} = 4  and |~ = 6  for estimation of the 

solution of a meningitis epidemic with optimality of the problem considered. Additionally, the initial conditions 2(0) =0.4; 3(0) = 0.3; 4�(0) = 0.2; 4(0) = 0.1and final conditions Q�6p�7 = 0, Q�6p�7 = 0, Q#6p�7 = 0	and	Q$6p�7 = 0 were used. 

Table 2. Table showing values used to analyze the meningitis equations. 

Parameters ¥ ¦§ ¨ © ª « ¬­ ¬® ¯ ° ± 

values 0.89 0.6806 0.15 0.3 0.1 0.2 0.2 0.15 1.2 0.04 0.6 

Ref. [19, 1] assumed assumed [19] [21, 1] [3] [13, 4] assumed [18] [9, 2] fitted 

  

Figure 1. Graph displaying the impact of intervention strategies:	 "� ≠ 0	��³	"$ ≠ 0. 

Figure 1(a) and 1(b) illustrates the case when application 

of the control efforts "�	and	"$ are non-zero. The controls 

were significant in maximizing the function J  while 

equating the controls "� and "#  to zero. Clearly, Figures 

1(a) shows the technique has less impact on decreasing the 

population of drug sensitive individuals. On the other hand, 

Figures 1(b) displays a significant notable effect of the 

controls on timing and attainment of peak infections on drug 

resistant individuals (4�) , this may be as a result of the 

education campaigns on effective use and administration of 

drugs as per physicians’ guidance on infective but resistant 

individuals. 
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Figure 2. Graph displaying the impact of intervention strategies: "� ≠ 0, "� ≠ 0 ��³ "# ≠ 0. 

Figures 2(a) and 2(b) shows the case when application of 

the control efforts "� ≠ 0, "� ≠ 0 and "# ≠ 0 are non-zero. 

Prevention technique, "�  and treating efforts "�  and "# 

are applied on the function J  and equating immunity 

intervention "$ to zero. Figures 2(a) and 2(b) confirms that 

implementing this approach reduces the drug sensitive 

infective individuals ( 3 ) and drug resistant infective 

individuals �4�	  significantly in the community. This 

technique showed that the meningitis infective population 

gave a significant positive change since prevention efforts 

like education campaigns and treatment interventions were 

employed against meningitis. 

  

Figure 3. Graph displaying the impact of intervention strategies: "� ≠ 0, "# ≠ 0 ��³ "$ ≠ 0. 

Figure 3(a) and 3(b) shows the impact of non-zero 

controls "� ≠ 0, "# ≠ 0 and "$ ≠ 0  with the prevention 

intervention "� equal to zero. Figure 4(a) and 4(b) shows 

the effect of optimal treatment controls only. Optimizing 

the value of J over "� and "# with "$ and "� equated to 

zero. Notably, figures 3(a), 3(b) and figure 4(a), 4(b) shows 

that due to the control strategies, the number of drug 

sensitive infective individuals �3	  and drug resistant 

infective individuals �4�	  displays little effect on 

decreasing the number of drug sensitive individuals �3	, 
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while there is little notable effect of the controls on timing 

and attainment of peak infections by drug resistant 

individuals (4�). However, the controls result to infections 

decrease in the community. 

  

Figure 4. Graph displaying the impact of intervention strategies: "� ≠ 0 ��³ "# ≠ 0. 

  

Figure 5. Graph displaying the impact of intervention strategies: susceptible and recovered population. 

Figures 5(a), 5(b) and 6(a), 6(b) shows the effect of 

employing all the control efforts. Using no-zero controls 

"�, "�, "#  and "$  to maximize J . Figures 6(a) and 6(b) 

confirms the significant contribution of all controls, the drug 

sensitive infective persons �3	  and drug resistant infective 

persons �4�	  showed a remarkable sharp decrease in the 

community. While at the same time Figures 5(a) and 5(b) 

displayed a gradual increase of both susceptible and 

recoveries. 
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Figure 6. Graph displaying the impact of all intervention strategies: "� ≠ 0, "� ≠ 0, "# ≠ 0 ��³ "$ ≠ 0. 

7. Conclusions 

The article formulates and analyzes an epidemic 

mathematical model that predicts the dynamics of 

meningococcal meningitis infection that maximizes 

prevention efforts, treatments, immunity control and also 

performed qualitative and quantitative study of the optimality 

system. The meningitis system was significantly studied to 

reveal key parameters that shape its transmission in the 

community. The meningitis only model has a locally-stable 

zero disease state when the effective reproduction value 

�R < 1. The model has a unique persistent state whenever 

�R > 1. The study reveals that infection rate and vaccination 

proportion are the most sensitive parameter values to be 

targeted to eradicate the meningitis disease. Focusing on 

meningitis employed techniques might result to wipe out of 

meningitis as clearly shown in Figure 2(a) and (b), where the 

population of meningitis infective persons are observed to be 

decreasing sharply to attain disease free state. Notably, 

application of all controls has demonstrated to be effective in 

eliminating infections from the community. Thus, there is 

need for further studies to determine the approach that is 

cost-effective technique in the case of less resources as 

witnessed in many developing economies. 
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