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Abstract: In this paper, Stokes first problem for an unsteady hydromagnetic free convective flow of a viscous incompressible 

fluid past an infinite vertical porous plate subjected to a variable suction in a rotating system has been studied. The specific 

equations governing the flow are nondimensionalized to obtain the dimensionless forms of the governing equations. The 

resulting dimensionless governing partial differential equations are solved numerically by the finite difference method based on 

the forward-time central-space scheme. The resulting numerical schemes are simulated in MATLAB software to obtain the 

profiles of the flow variables such as velocity, temperature, species concentration and magnetic induction. The main findings of 

this study are that an increase in the joule heating parameter results in a uniform increase in the velocity and temperature profiles 

near the plate but remain constantly distributed away from the plate. This observation implies that the flow is influenced 

substantially by the strength of joule heating near the plate and in the bulk of the fluid. The results are useful in industrial water 

treatment systems which rely on physical forces to aid in the removal of pollutants. Moreover, the results are applicable in the 

separation of isotopes contained in a mixture of very light molecular-weight gases such as hydrogen and helium and medium 

molecular-weight gases like nitrogen and air. 

Keywords: Forward-Time-Central-Space, Hydromagnetic-Flow, Rotating-System, Stokes-Problem, Vertical-Porous-Plate, 

Variable-Suction 

 

1. Introduction 

The production of sheeting materials, such as polymer and 

metal sheet, arises in various industrial manufacturing 

processes. The quality of the final product depends on the 

rates of heat and mass transfer on the surface of the sheet. 

Therefore, the cooling rate of the plate and mass transfer rate 

should be effectively controlled so as to achieve the desired 

quality of the final product. Mass transfer plays an important 

role in many industrial processes such as the removal of 

pollutants from plant discharges streams by absorptions, the 

stripping of gases from waste water and diffusion of gases in 

nuclear power reactors. 

In recent years, considerable attention has been focused in 

the study of heat and mass transfer in MHD flow due to its 

application in engineering devices (such as MHD power 

generators, MHD flow meters, MHD pumps, Hall 

accelerators and heat exchangers) and in industrial processes 

(such as metallurgy and material processing). Liquid metals 

are utilized in technological casting and cooling loops of 

nuclear reactors. The first research study on MHD flow was 

done by M. Faraday [1], who performed an experiment on the 

behavior of current in a circuit placed in an unsteady 

magnetic field. There are various theoretical studies in 

modeling the fluid flow past an infinite vertical porous plate. 

For example, Kinyanjui et al. studied heat and mass transfer 

in unsteady free convection flow with radiation absorption 

past an impulsively started infinite vertical porous plate 
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subjected to a strong magnetic field [2]. The model equations 

were solved by the finite difference method. The study 

analyzed the effects of various parameters on the velocity, 

temperature and concentration profiles, as well as skin 

friction and the rates of heat and mass transfer. The results 

revealed that cooling (or heating) of the plate by free 

convection currents has no effect on the rate of convection 

heat transfer at the surface of the plate. Also, an increase in 

the Schmidt number leads to a decrease in the rate of 

convection mass transfer at the surface of the plate. 

Narahari et al. studied unsteady two-dimensional MHD 

free convection flow of a radiative fluid past an infinite 

vertical plate with constant heat and mass flux in the 

presence of thermal radiation and uniform magnetic field [3]. 

The model equations were solved analytically by the method 

of Laplace transform. The results obtained from the study 

revealed that the fluid velocity increases with an increase in 

the radiation parameter and decreases with an increase in the 

Hartmann number. This study neglected the effects of inertia 

on the boundary layer flow. 

Murthy et al. studied Stokes first problem for the unsteady 

MHD natural convective flow past an infinite vertical porous 

plate with thermal radiation, Hall current, heat and mass 

transfer in presence of transverse magnetic field of uniform 

strength [4]. The model equations were solved both 

numerically by the finite element method and analytically by 

the perturbation technique. The results revealed that Hall 

current accelerates flow in the boundary layer region but 

decelerates the primary fluid velocity in the free-stream 

region. Further, thermal radiation accelerates both the 

primary and secondary velocities. Hall current and thermal 

radiation reduce the primary skin- friction but increase the 

secondary skin-friction. Moreover, the rate of heat transfer 

decreases with an increase in thermal radiation parameter. 

Subbanna et al. studied unsteady MHD free convective 

flow of Newtonian fluid past an infinite vertical porous plate 

with time-dependent permeability and oscillatory suction in 

the presence of a uniform transverse magnetic field [5]. The 

model equations were solved semi-analytically by the 

perturbation method. The results revealed that Hartmann 

number, Prandtl number, and heat source parameter retard the 

flow while Grashof number and permeability parameter 

accelerate the flow. Also, the Schmidt number, suction 

velocity, and chemical reaction parameter reduce the species 

concentration. Further, the Grashof number, permeability 

parameter and suction velocity increase the shear stress at the 

plate while Hartmann number, Prandtl number, Schmidt 

number, chemical reaction parameter, and heat source 

parameter reduce the shear stress at the plate. 

Finally, theoretical studies in modeling the MHD fluid flow 

in different flow configurations have also drawn the attention 

of many authors [6-15]. 

From the above previous modeling studies on fluid flow 

past an infinite vertical porous plate, it is noted that variable 

magnetic field, magnetic induction, joule heating, viscous 

dissipation, and rotating system have received little attention. 

The identified research gaps prevent the direct application of 

existing models to the sheeting industry. Therefore, the 

present study seeks to generalize the results of Krishna et al. 

[14] to include the effects of variable magnetic field, 

magnetic induction, joule heating, viscous dissipation, 

chemical reaction, heat source, Soret and Dufour effects for 

the case of a nonelastic fluid. The study results are essential 

in the sheeting industry and in the design of engineering 

devices which operate on the principles of MHD flow. 

The rest of the paper is organized as follows: section II 

presents the model description and mathematical analysis, 

section III presents the numerical technique used to solve the 

corresponding model, section IV presents the results of the 

present study, and section V presents the conclusions drawn 

from the present study. 

2. Mathematical Modeling 

In this study, the unsteady MHD Stokes free convection 

flow of a viscous incompressible fluid past an infinite vertical 

porous plate subjected to variable suction is considered, as 

shown in Figure 1. A Cartesian coordinate system (x, y, z) is 

chosen such that x-axis is along the plate in the vertically 

upward direction, y-axis is normal to the plate and $z-$axis 

is along the width of the plate (i.e., perpendicular to the 

xy-plane). The plate is infinite in extent in both x  and z  

directions, so the domain under consideration is x−∞ < < ∞ , 

0 y≤ < ∞ and z−∞ < < ∞ . 

The plate and the fluid rotate as a rigid body with a 

constant angular velocity Ω  about the y-axis. A strong 

magnetic field H% of variable strength H is applied along 

the y-axis. At time 0t ≤ , the plate and the fluid are assumed 

to have the same uniform temperature T∞ and the strength of 

the imposed magnetic field is 0H . At time 0t > , the plate 

starts moving impulsively along the positive x-axis with a 

uniform velocity 0 0U >  and its temperature is 

instantaneously lowered or raised to wallT , which is 

maintained constant thereafter. The species concentration at 

the plate is wallC while that at the free-stream is C∞ . 

 

Figure 1. Geometry of the research problem. 
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Since the applied magnetic field is strong, the Hall current 

significantly affects the flow. The effect of Hall current gives 

rise to a force in a direction perpendicular to the xy-plane (i.e., 

in the z-direction), which induces a cross flow in that direction 

and hence the flow becomes three-dimensional. Since the plate 

is infinite in extent in both x and z directions and the flow is 

unsteady, the flow variables in this study are functions of y and 

t only. Since the applied magnetic field is of variable strength, 

its magnitude ( H ) is also a function of y and t. 

2.1. Governing Equations 

The general equations governing the flow problem in this 

study are as follows: 

( ) 0.V
t

ρ ρ∂ + ∇⋅ =
∂

r r

                                        (1) 
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In this study, all the fluid properties are assumed to be constants, there is no-slip condition at the plate, the fluid is 

electrically conducting and the plate is non-conducting. Using Boussinesq and boundary layer approximations, the governing 

equations of continuity, momentum, energy, concentration, and magnetic induction are given by 
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2.2. Boundary and Initial Conditions 

Equations (7)--(12) are solved subject to the following initial and boundary conditions, for 0y ≥  and 0t ≥ . 
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0, 0, , , 0 at    0 xu w T T C C H t∞ ∞= = = = = =                               (13) 

0 wall wall 0, 0, , ,  0 atxu U w T T C C H H y= = = = = =                            (14) 

0, 0, , , 0 as   xu w T T C C H y∞ ∞= = = = = → ∞                             (15) 

2.3. Non-dimensionalization 

In this study, the characteristic length is taken as ( )0/ Uµ ρ  and the characteristic velocity is taken as the velocity of 

the plate 0U . Therefore, the characteristic time is ( )2
0/ Uµ ρ . To non-dimensionalize the specific governing equations 

(7)—(12) together with the initial and boundary conditions (13)—(15), the following dimensionless variables are 

introduced. 
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Using the chain rule of differentiation, the dimensionless forms of the specific governing equations are obtained as: 
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subject to the following initial and boundary conditions 

( ,0) 0, ( ,0) 0, ( ,0) 0, ( ,0) 0, ( ,0) 0u y w y y y h yθ φ= = = = =                      (25) 

(0, ) 1, (0, ) 0, (0, ) 1, (0, ) 1, (0, ) 1u t w t t t h tθ φ= = = = =                       (26) 

( , ) 0, ( , ) 0, ( , ) 0, ( , ) 0, ( , ) 0u t w t t t h tθ φ∞ = ∞ = ∞ = ∞ = ∞ =                     (27) 
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3. Numerical Procedure 

The initial boundary value problem (IBVP) given by 

equations (10a) to (10f) is solved numerically using 

forward-time central-space (FTCS) scheme. The 

computational domain is confined by the y axis and t axis. 

The y -values range from 0 to maxy , where maxy is a large 

finite value that approximates the conditions at infinity. The 

t -values range from 0 to maxt . The closed interval max[0, ]y is 

divided into yN sub-intervals of equal width y∆ . The y

-values at the grid points are denoted by iy  for

0,1, 2, , yi N= L . The closed interval max[0, ]t is divided into 

tN  sub-intervals of equal width t∆ . The t -values at the 

grid points are denoted by jt  for 0,1,2, , tj N= L . The task is 

to approximate the values of the unknown functions 

( , ), ( , ), ( , ), ( , )u y t w y t y t y tθ φ and ( , )h y t at the grid points 

( ,i jy t ) in the discretized domain, where iy i y= ∆  and

jt j t= ∆ . For instance, the discrete approximation of the 

primary velocity ( , )u y t  at the grid point ( ,i jy t ) is denoted 

by ,i ju  or ( , )i ju y t . Similarly, the discrete approximation of 

the species concentration ( , )y tφ  at the grid point ( ,i jy t ) is 

denoted by ,i jφ , etc. The nodes at 0i =  and yi N=  define 

the boundaries of the computational domain while the time 

level 0j = defines the initial conditions. 

In the FTCS scheme, the derivatives with respect to time ( t ) 

are approximated using forward difference scheme while the 

derivatives with respect to space variables ( y ) are 

approximated using central difference scheme at the thj time 

level. Thus, the discretized form of the dimensionless 

governing equations are given as: 
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The corresponding finite difference approximations of the initial and boundary conditions are given by: 

,0 ,0 ,0 ,0 ,00, 0, 0, 0, 0i i i i iu w hθ φ= = = = =                                 (34) 

0, 0, 0, 0, 0,1, 0, 1, 1, 1j j j j ju w hθ φ= = = = =                                 (35) 

, , , , ,0, 0, 0, 0, 0
y y y y yN j N j N j N j N ju w hθ φ= = = = =                             (36) 

In the first iteration, the solutions for the unknown functions , , ,u w θ φ and h  are determined at time level 0j = , where the 
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initial approximations are obtained from the initial conditions 

given by equation (34). The iteration is repeated for

1,2, , tj N= L . The numerical computations have been 

performed with the aid of MATLAB software for 

min max20, 150, 0, 1y tN N y y= = = = and ( )max min / yy y y N∆ = − . 

The time step in this study is taken as ( )2
/ 8t y∆ = ∆ , which 

satisfies the stability condition. The simulation results are 

presented graphically and discussed in the next section. 

4. Results and Discussion 

The flow variables in this study are the primary velocity, 

secondary velocity, temperature, species concentration and 

magnetic induction. The various flow parameters that have 

been varied include the magnetic parameter 2(M ) , Hall 

parameter (m) , Eckert number (Ec) , Joule heating parameter

(R) , radiation parameter (N) , chemical reaction parameter ( )γ , 

heat source parameter ( )δ , rotation parameter o(R ) , magnetic 

Reynolds number m(R ) , Dufour number (Du) , Soret number

(Sr) , Schmidt number (Sc) , Prandtl number (Pr) , thermal 

Grashof number T(Gr ) , mass Grashof number C(Gr ) , and 

suction parameter ( 0v ), at time 0.1887t = . These parameters 

are input into a computer program where each parameter is 

varied at a time. The Prandtl number Pr 0.71=  corresponds to 

air. The Grashof number Gr 0> corresponds to cooling of the 

plate by free convection currents. In this study, the magnetic 

parameter 2
M 5≥  signifies a strong magnetic field. 

4.1. Effects of Varying Mass Grashof Number 

Figure 2 shows that an increase in mass Grashof number 

leads to an increase in both the primary and secondary 

velocity profiles. The mass Grash of number defines the ratio 

of the species buoyancy force to the viscous force. As 

expected, the fluid velocity increases due to increase in the 

species buoyancy force. The mass Grashof number defines 

the ratio of the species buoyancy force to the viscous 

hydrodynamic force. As expected, the fluid velocity 

increases and the peak value is more distinctive due to 

increase in the species buoyancy force. 

4.2. Effects of Varying Thermal Grash of Number 

Figure 3 shows that an increase in thermal Grashof number 

leads to an increase in both the primary and secondary velocity 

profiles. Thermal Grashof number represents the effects of free 

convection currents and a positive value physically corresponds 

to heating of the fluid (or cooling of the plate). Velocity of the 

fluid increases because the fluid flow is assisted by the free 

convection currents. As expected, increase in the velocity 

profiles is due to the enhancement of thermal buoyancy force. 

The observed increase in secondary velocity profiles with 

increase in thermal Grashof number is as a result of emergence 

of secondary circulation currents due to the presence of the 

temperature gradient. The thermal Grashof number represents 

the effect of the thermal buoyancy force relative to the viscous 

hydrodynamic force. The flow is accelerated due to the 

enhancement of the buoyancy force corresponding to the 

increase in thermal Grashof number. The positive values of 

thermal Grashof number correspond to cooling of the plate by 

free convection. Hence, heat is conducted away from the 

vertical plate into the fluid, which increases the temperature and 

thereby enhancing the buoyancy force. The observed increase 

in velocity profiles is due to the increase in buoyancy force with 

increasing Grash of number. 

4.3. Effects of Varying Rotation Parameter 

Figure 4 shows that an increase in rotation parameter 

leads to a decrease in the primary velocity profiles but an 

increase in the secondary velocity profiles. This means 

rotation can be used to control the velocity profiles in a 

rotating system. 

 

(a) Primary Velocity Profiles 

 

(b) Secondary Velocity Profiles 

Figure 2. Velocity profiles for different values of mass Grashof number. 
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(a) Primary Velocity Profiles 

 

(b) Secondary Velocity Profiles 

Figure 3. Velocity profiles for different values of thermal Grashof number. 

 

(a) Primary Velocity Profiles 

 

(b) Secondary Velocity Profiles 

Figure 4. Velocity profiles for different values of magnetic parameter (R0). 

 

(a) Primary Velocity Profiles 

 

(b) Secondary Velocity Profiles 

Figure 5. Velocity profiles for different values of magnetic parameter (M2). 
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Figure 6. Induction profiles for different values of magnetic parameter (M2). 

4.4. Effects of Varying Magnetic Parameter 

Figure 5 shows that an increase in magnetic parameter leads 

to a decrease in both the primary and secondary velocity 

profiles. This is because the application of a transverse 

magnetic field to an electrically conducting fluid gives rise to 

a resistive force called the Lorentz force, which has the 

tendency to slow down the motion of the fluid in the velocity 

boundary layer. Figure 6 shows that an increase in magnetic 

parameter leads to a increase in magnetic induction profiles. 

Further, the magnetic damping force increases with increasing 

magnetic parameter, causing a decrease in the velocity profiles. 

Magnetic field can, therefore, be employed to control the 

velocity boundary layer characteristics of a fluid. The Lorentz 

force acts against the flow since the magnetic field is applied 

in the normal direction, hence retarding the motion. 

4.5. Effects of Varying Hall Parameter 

Figure 7 shows that an increase in Hall parameter leads to an 

increase in both the primary and secondary velocity profiles. This 

is because increase in Hall parameter leads to decrease in the 

conductivity of the fluid, reducing the magnetic damping force. 

 

(a) Primary Velocity Profiles 

 

(b) Secondary Velocity Profiles 

Figure 7. Velocity profiles for different values of Hall parameter (m). 

4.6. Effects of Varying Suction Parameter 

Figure 8 shows that an increase in sunction parameter leads to 

a decrease in both the primary and secondary velocity profiles. 

 

(a) Primary Velocity Profiles 

 

(b) Secondary Velocity Profiles 

Figure 8. Velocity profiles for different values of suction parameter v0. 
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Figure 9. Temperature profiles for different values of suction parameter v0. 

Figure 9 shows that an increase in sunction parameter leads 

to a decrease in both the temperature profiles. 

 

Figure 10. Concentration profiles for different values of suction parameter v0. 

Figure 10 shows that an increase in suction parameter leads 

to a decrease in both the concentration profiles. Suction 

decreases the velocity of the fluid thus decreasing the rate at 

which the species are carried away from the boundary layer 

region, and hence the observed decrease in the species 

concentration. Thus velocity, temperature and concentration 

boundary layers can be controlled by varying the rate of 

suction. The results mean that introducing suction can be used 

to destabilize the velocity, thermal and concentration 

boundary layers. This indicates the usual fact that suction 

destabilizes the growth of the boundary layer. 

5. Conclusion 

The FTCS schemes used in the computations in this study 

are stable and consistent. The effects of various flow 

parameters on unsteady hydromagnetic Stokes free 

convection flow of a viscous, incompressible and electrically 

conducting fluid past an impulsively started infinite vertical 

porous plate subjected to variable suction in a rotating system 

with heat and mass transfer in the presence of a strong, 

non-uniform magnetic field normal to the plate have been 

investigated by varying the parameters. The important 

findings in this study are: 

i. Velocity of the fluid can be controlled by introducing a 

porous medium in a rotating system. 

ii. Introducing injection/suction can be used to control the 

boundary layer growth, the shear stresses and rates of 

heat transfer and mass transfer. 

iii. Rotation can be used to control the magnitude of shear 

stresses and the boundary layer formation over a 

stretching sheet. 

iv. Introducing porous media in a flow domain can be used 

to control the velocity, concentration and temperature of 

the fluid. 

v. The Hall effects can be utilized in controlling the fluid's 

velocity, concentration, temperature and sheer stress and 

the rates of heat and mass transfer respectively. 
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