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Abstract: Syllogistic reasoning plays an important role in human reasoning, and has been widely studied from Aristotle 

onward. In previous studies, when deriving all the other valid syllogisms, at least two valid syllogisms were taken as the basic 

axioms. While this paper derives all other valid syllogisms only from one valid syllogism. On the basis of generalized 

quantifier theory and set theory, this paper shows that the remaining 23 valid syllogisms can be derived only from the syllogism 

EIO-1 by making the best of the definitions of three negative quantifiers of Aristotelian quantifiers, the symmetry of Aristotelian 

quantifiers no and some, and several propositional reasoning rules such as anti-syllogism rules and the subsequent weakening 

rule, and so on. This paper syntactically provides a simple and reasonable mathematical model for studying other kinds of 

syllogisms, such as generalized syllogistic, rational syllogistic, Aristotelian modal syllogistic and generalized modal syllogistic. 

And this research shows that formalized logic has the characteristics of structuralism, that is, it studies not only the forms and 

laws of thinking, but also the structure of thinking objects and the relationship between structures. It is hoped that this formal and 

innovative research is not only beneficial to the further development of various syllogistic logics, but also to natural language 

information processing in computer science, and also to knowledge representation and knowledge reasoning in Artificial 

Intelligence. 
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1. Introduction 

Syllogistic reasoning is a common form of reasoning in 

natural language [1-3], which has been widely studied and 

plays an important role in logic [4-10]. Aristotelian syllogistic 

logic mainly studies the semantic properties and reasoning 

properties of four Aristotelian quantifiers, that is, all, no, 

some and not all [11, 12]. The major premise, minor premise 

and conclusion of an Aristotelian syllogism can be composed 

of the four sorts of propositions A, E, I and O, and the middle 

term has four different positions in the major and minor 

premises, hence there are (4×4×4×4=) 256 kinds of 

Aristotelian syllogisms, and only 24 syllogisms are valid 

among them [13, 14]. 

Łukasiewicz [15] formally derived the other 22 valid 

Aristotelian syllogisms from the two Aristotelian syllogisms 

AAA-1 and AII-3 by using propositional reasoning rules. On 

the basis of Łukasiewicz’s work, and by means of the 

knowledge of first-order logic, Shushan Cai [16] axiomatized 

Aristotelian syllogistic logic from the two syllogisms AAA-1 

and AII-3 and the fact aEb→bEa (that is, the symmetry of 

Aristotelian quantifier no). By means of generalized quantifier 

theory, Xiaojun Zhang and Sheng Li [13] formally proved the 

remaining 22 valid Aristotelian syllogisms from the two 

Aristotelian syllogisms AAA-1 and EAE-1. Mengyao Huang 

and Xiaojun Zhang [17] expounded the work of Łukasiewicz 

[15] by making use of generalized quantifier theory. Unless 

otherwise specified, all of syllogisms in the following are 

Aristotelian syllogisms.  

There are many results of studying Aristotelian 

syllogistic logic by different methods, such as Westerståhl 

[12], Moss [3, 8], Endrullis and Moss [5], and so on. As far 

as we know, there are at least two syllogisms as the 

reasoning basis when one tries to deduce the remaining 

valid syllogisms [18]. While this paper takes only one 
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syllogism (that is, EIO-1) as the reasoning basis in order to 

deduce the remaining 23 valid syllogisms. More 

specifically, this paper syntactically proves that the 

remaining 23 valid syllogisms can be derived only based on 

the valid syllogism EIO-1 by making full use of generalized 

quantifier theory and set theory. 

2. The Structure of Syllogisms and Their 

Formalization 

A syllogism is composed of three categorical propositions. 

Every categorical proposition has the form: Q(x, y), in which 

Q represents any of the four Aristotelian quantifiers (that is, 

all, no, some and not all), and x is the subject variable, y is the 

predicate variable. 

(1) all(x, y) means “all xs are y”, which is an universal 

affirmative proposition, and called the proposition A. 

(2) no(x, y) means “no xs are y”, that is, “all xs are not y”, 

which is an universal negative proposition, and called 

the proposition E. 

(3) some(x, y) means “some xs are y”, which is a particular 

affirmative proposition, and called the proposition I. 

(4) not all(x, y) means “not all xs are y”, that is, “some xs are 

not y”, which is a particular negative proposition, and 

called the proposition O. 

The figures of syllogisms are determined by the position of 

the middle term, and its definition is as usual. For example, “no 

ys are z, and some xs are y, then not all xs are z”, in which x, y 

and z represent the lexical variables in the syllogism. This 

syllogism is the first figure and is composed of the categorical 

proposition E, I, and O, respectively. Therefore, it is the first 

figures syllogism EIO, which can be denoted as EIO-1. The 

syllogism can be formalized as no(x, y)→(some(x, y)→not all(x, 

y)). The formalization of other syllogisms is similar to this. 

3. Syntax and Semantics of Aristotelian 

Syllogism Logic 

The initial symbols, formation rules and related definitions 

of Aristotelian syllogistic logic are given respectively in the 

following. 

3.1. Primitive Symbols 

(1) lexical variables: x, y, z 

(2) unary negative operator: ¬ 

(3) binary implication operator: → 

(4) quantifier: all 

(5) brackets: (,) 

3.2. Formation Rules 

(1) If Q is a quantifier, x and y are lexical variables, then 

Q(x, y) is a well-formed formula. 

(2) If p and q are well-formed formulas, then p→q are 

well-formed formulas. 

(3) Only the formulas obtained through (1) and (2) are 

well-formed formulas. 

For example, all(x, y), and all(x, y)→¬all(y, z) are 

well-formed formulas, which read respectively as ‘all xs are y’, 

and ‘if all xs are y, then that all ys are z is false’. Others are 

similar. 

Let D be the domain of lexical variables, and Q be a 

quantifier, then the outer quantifier of Q is denoted as ¬Q, the 

inner quantifier of Q is denoted as Q¬, and the dual quantifier 

of Q is denoted as ¬Q¬. For example: not all=¬all, no=all¬, 

some=¬all¬, so the quantifier used as the initial symbol in 

this paper is only the Aristotelian quantifier all, and the other 

three Aristotelian quantifiers can be obtained by the 

definition of negative quantifiers. 

3.3. Related Definitions 

(1) Definition of connective ∧:  

(p∧q) =def ¬(p→¬q); 

(2) Definition of connective ↔:  

(p↔q) =def ((p→q)∧(q→p); 

(3) Definition of inner negative quantifier:  

Q¬(x, y) =def Q(x, D−y); 

(4) Definition of outer negative quantifier:  

¬Q(x, y) =def It is not that Q(x, y); 

(5) Definition of the quantifier not all:  

not all(x, y) =def ¬all(x, y); 

(6) Definition of the quantifier no:  

no(x, y) =def all¬(x, y); 

(7) Definition of the quantifier some:  

some(x, y) =def ¬all¬(x, y). 

This paper only studies the propositions containing all(x, y), 

no(x, y), some(x, y) and not all(x, y), so there is no recursion of 

any kind. 

4. Axiom System of Aristotelian 

Syllogism Logic 

In the following, ⊢ represents a proposition or syllogism 

that can be proved. For example, the syllogism EIO-1 can be 

proved, and denoted as ⊢no(x, y)→(some(x, y)→not all(x, y)). 

The other notations are similar. The verifiable Aristotelian 

syllogisms in the system can be derived from the following 

basic axioms and reasoning rules. 

4.1. Basic Axioms 

(1) A0: if α is a valid formula in propositional logic, then 

⊢α. 

(2) A1: ⊢all(x, x). 

(3) A2: ⊢some(x, x). 

(4) A3 (that is, the syllogism EIO-1):  

⊢no(y, z)→(some(x, y)→not all(x, z)). 

The following reasoning rules in propositional logic will be 

used later. 

4.2. Reasoning Rules 

Aristotelian syllogistic logic is an extension of classical 
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propositional logic, so the following reasoning rules in the 

latter are also applicable in the former. In the following rules, 

α, β, γ and δ are well-formed formulas. 

(1) Rule 1 (Replacement rule): if the formula α is obtained 

from the formula β by means of “replacing one 

variable with another”, then ⊢α can be derived from 

⊢β. 

(2) Rule 2 (Modus Ponens): ⊢β can be derived from 

⊢(α→β) and ⊢α. 

(3) Rule 3 (Definiens and definendum interchange): 

⊢(...β...) can be obtained from ⊢(...α...) and α=def β, 

and vice versa. 

(4) Rule 4 (Substitution of equivalents): ⊢(...β...) can be 

derived from from ⊢(...α...) and α↔ β, and vice versa. 

(5) Rule 5 (Double negative): ⊢α can be derived from 

⊢¬¬α, and vice versa. 

(6) Rule 6 (Antecedent interchange): ⊢(β→(α→γ)) can be 

obtained from ⊢(α→(β→γ)). 

(7) Rule 7 (Subsequent weakening): ⊢(α→(β→δ)) can be 

derived from⊢(α→(β→γ)) and ⊢(γ→δ). 

(8) Rule 8 (Reverse rule): From ⊢(α→β) infer 

⊢(¬β→¬α). 

(9) Rule 9 (Rule A of anti-syllogism): From ⊢(α→(β→γ)) 

infer ⊢(α→(¬γ→¬β)). 

(10) Rule 10 (Rule B of anti-Syllogism): From ⊢(α→ 

(β→γ)) infer ⊢(β→(¬γ→¬α)). 

4.3. Relevant Facts 

According to generalized quantifier theory [13, 19], among 

the four Aristotelian quantifiers (that is, all, no, some and not 

all), any three Aristotelian quantifiers are one of the three 

kinds of negative (that is, inner negative, outer negative and 

dual negative) quantifiers of the other Aristotelian quantifier. 

Specifically, (1) all and no, some and not all are inner 

negations each other, that is, all=no¬, no=all¬; some=not 

all¬; not all=some¬ (i.e. the following fact 1); (2) all and not 

all, some and no are outer negative each other, that is, 

all=¬not all, not all=¬all; some=¬no, no= ¬some (i.e. the 

following fact 2). 

On the basis of the above definitions, reasoning rules, and 

axioms, the following facts can be easily proved by means of 

the above basic axioms and reasoning rules. And these facts 

are the definitions or facts in generalized quantifier theory [13, 

19], thus their detailed proofs are omitted here. 

Fact 1 (inner negation): 

(1) ⊢all(x, y)↔no¬(x, y); 

(2) ⊢no(x, y)↔all¬(x, y); 

(3) ⊢some(x, y)↔not all¬(x, y); 

(4) ⊢not all(x, y)↔some¬(x, y). 

Fact 2 (outer negation): 

(1) ⊢all(x, y)↔¬not all(x, y); 

(2) ⊢not all(x, y)↔¬all(x, y); 

(3) ⊢some(x, y)↔¬no(x, y); 

(4) ⊢no(x, y)↔¬some(x, y). 

Fact 3 (symmetry of some and no): 

(1) (symmetry of some): ⊢some(x, y)↔some(y, x); 

(2) (symmetry of no): ⊢no(x, y)↔no(y, x). 

Fact 4 (assertoric subalternations): 

(1) ⊢no(x, y)→not all(x, y); 

(2) ⊢all(x, y)→some(x, y). 

4.4. Reducible Relations Between / Among Syllogisms 

In the following theorem 1, EIO-1⇒EIO-2 means that the 

validity of syllogism EIO-2 can be obtained from the validity 

of syllogism EIO-1. In other words, there is a reducible 

relationship between the two Aristotelian syllogisms. Others 

are similar. In fact, the syllogism EIO-1 is the basic axiom 

A3. 

Theorem 1: The remaining 23 valid syllogisms can be 

derived only from the syllogism EIO-1. According to the order 

of proof, we find the following reducible relations 

between/among syllogisms: 

(1) EIO-1⇒EIO-2 

(2) EIO-1⇒EIO-3 

(3) EIO-1⇒EIO-3⇒EIO-4 

(4) EIO-1⇒EAE-2 

(5) EIO-1⇒EAE-2⇒EAE-1 

(6) EIO-1⇒EAE-2⇒EAE-1⇒AEE-4 

(7) EIO-1⇒EAE-2⇒AEE-2 

(8) EIO-1⇒AII-3 

(9) EIO-1⇒AII-3⇒AII-1 

(10) EIO-1⇒AII-3⇒AII-1⇒IAI-4 

(11) EIO-1⇒AII-3⇒IAI-3 

(12) EIO-1⇒EAE-2⇒EAO-2 

(13) EIO-1⇒EAE-2⇒EAO-2⇒EAO-1 

(14) EIO-1⇒EAE-2⇒EAE-1⇒AEE-4⇒AEO-4 

(15) EIO-1⇒AEE-2⇒AEO-2 

(16) EIO-1⇒EAE-2⇒EAO-2⇒AAI-3 

(17) EIO-1⇒EAE-2⇒EAE-1⇒AAA-1 

(18) EIO-1⇒EAE-2⇒EAE-1⇒AAA-1⇒AAI-1 

(19) EIO-1⇒EAE-2⇒EAE-1⇒AAA-1⇒AAI-1⇒AAI-4 

(20) EIO-1⇒EIO-2⇒AOO-2 

(21) EIO-1⇒EAE-2⇒EAE-1⇒AAI-1⇒EAO-4 

(22) EIO-1⇒EAE-2⇒EAE-1⇒AAI-1⇒EAO-4⇒EAO-3 

(23) EIO-1⇒EAE-2⇒EAE-1⇒AAA-1⇒OAO-3 

Proof: 

[1] ⊢no(y, z)→(some(x, y)→not all(x, z)) (i. e. EIO-1, that is basic axiom A3) 

[2] ⊢no(y, z)↔no(z, y) (by Fact 3 and Rule 1) 

[3] ⊢no(z, y)→(some(x, y)→not all(x, z)) (i.e. EIO-2, by [1, 2] and Rule 4) 

[4] ⊢some(x, y)↔some(y, x) (by Fact 3 and Rule 1) 

[5] ⊢no(y, z)→(some(y, x)→not all(x, z)) (i.e. EIO-3, by [1, 4] and Rule 4) 

[6] ⊢no(z, y)→(some(y, x)→not all(x, z)) (i.e. EIO-4, by [2, 5] and Rule 4) 
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[7] ⊢no(y, z)→(¬not all(x, z)→¬some(x, y)) (by [1] and Rule 9) 

[8] ⊢no(y, z)→(all(x, z)→no(x, y)) (i.e. EAE-2, by [7], Fact 2 and Rule 4) 

[9] ⊢no(z, y)→(all(x, z)→no(x, y)) (i.e. EAE-1, by [2, 8] and Rule 4) 

[10] ⊢no(x, y)↔no(y, x) (by Fact 3 and Rule 1) 

[11] ⊢all(x, z)→(no(z, y)→no(y, x)) (i.e. AEE-4, by [9, 10] and Rule 6) 

[12] ⊢no(y, z)→(all(x, z)→no(y, x)) (by [8, 10] and Rule 4) 

[13] ⊢all(x, z)→(no(y, z)→no(y, x)) (i.e. AEE-2, by [12] and Rule 6) 

[14] ⊢some(x, y)→(¬not all(x, z)→¬no(y, z)) (by [1] and Rule 10) 

[15] ⊢some(x, y)→(all(x, z)→some(y, z)) (by [14], Fact 2 and Rule 4) 

[16] ⊢all(x, z)→(some(x, y)→some(y, z)) (i.e. AII-3, by [15] and Rule 6) 

[17] ⊢all(x, z)→(some(y, x)→some(y, z)) (i.e. AII-1, by [4, 16] and Rule 4) 

[18] ⊢some(y, z)↔some(z, y) (by Fact 3 and Rule 1) 

[19] ⊢all(x, z)→(some(y, x)→some(z, y)) (by [17, 18] and Rule 4) 

[20] ⊢some(y, x)→(all(x, z)→some(z, y)) (i.e. IAI-4, by [19] and Rule 6) 

[21] ⊢all(x, z)→(some(x, y)→some(z, y)) (by [4, 16] and Rule 4) 

[22] ⊢some(x, y)→(all(x, z)→some(z, y)) (i.e. IAI-3, by [21] and Rule 6) 

[23] ⊢no(x, y)→not all(x, y) (by Fact 4 and Rule 1) 

[24] ⊢no(y, z)→(all(x, z)→not all(x, y)) (i.e. EAO-2, by [8, 23] and Rule 7) 

[25] ⊢all(x, z)→(no(z, y)→not all(x, y)) (by [2, 24] and Rule 4) 

[26] ⊢no(z, y)→(all(x, z)→not all(x, y)) (i.e. EAO-1, by [25] and Rule 6) 

[27] ⊢no(y, x)→not all(y, x) (by Fact 4 and Rule 1) 

[28] ⊢all(x, z)→(no(z, y)→not all(y, x)) (i.e. AEO-4, by [11, 27] and Rule 7) 

[29] ⊢all(x, z)→(no(y, z)→not all(y, x)) (i.e. AEO-2, by [13, 27] and Rule 7) 

[30] ⊢all(x, z)→(¬not all(x, y)→¬no(y, z)) (by [24] and Rule 9) 

[31] ⊢all(x, z)→(all(x, y)→some(y, z)) (i.e. AAI-3, by [30], Fact 2 and Rule 4) 

[32] ⊢all¬(z, y)→(all(x, z)→all¬(x, y)) (by [9] and the definition of no) 

[33] ⊢all(z, D−y)→(all(x, z)→all(x, D−y)) (by [32] and the definition of inner negative quantifier) 

[34] ⊢all(z, y)→(all(x, z)→all(x, y)) (i.e. AAA-1, by [33] and Rule 1) 

[35] ⊢all(x, y)→some(x, y) (by Fact 4 and Rule 1) 

[36] ⊢all(z, y)→(all(x, z)→some(x, y)) (i.e. AAI-1, by [34, 35] and Rule 1) 

[37] ⊢all(z, y)→(all(x, z)→some(y, x)) (by [4, 36] and Rule 1) 

[38] ⊢all(x, z)→(all(z, y)→some(y, x)) (i.e. AAI-4, by [37] and Rule 6) 

[39] ⊢all¬(z, y)→(not all¬(x, y)→not all(x, z)) (by [3] and the definition of no and some) 

[40] ⊢all(z, D−y)→(not all(x, D−y)→not all(x, z)) (by [39] and the definition of inner negative quantifier) 

[41] ⊢all(z, y)→(not all(x, y)→not all(x, z)) (i.e. AOO-2, by [40] and Rule 1) 

[42] ⊢all(x, z)→(¬some(y, x)→¬all(z, y)) (by [38] and Rule 9) 

[43] ⊢all(x, z)→(no(y, x)→not all(z, y)) (by [42], Fact 2 and Rule 4) 

[44] ⊢no(y, x)→(all(x, z)→not all(z, y)) (i.e. EAO-4, by [43] and Rule 6) 

[45] ⊢no(x, y)→(all(x, z)→not all(z, y)) (i.e. EAO-3, by [10, 44] and Rule 4) 

[46] ⊢all(x, z)→(¬all(x, y)→¬all(z, y)) (by [34] and Rule 10) 

[47] ⊢all(x, z)→(not all(x, y)→not all(z, y)) (by [46], Fact 2 and Rule 4) 

[48] ⊢not all(x, y)→(all(x, z)→not all(z, y)) (i.e. OAO-3, by [47] and Rule 6) 
 

It can be seen from theorem 1 that the remaining 23 valid 

syllogisms can be derived only from the valid syllogism EIO-1 

through 48 steps by making full of generalized quantifier theory 

and the reasoning rules in propositional logic. 

Moss [8], Beihai Zhou et al. [20], and Xiaojun Zhang [21] 

have studied the soundness and completeness of Aristotelian 

syllogistic logic, however, these studies need to be refined and 

perfected. For example, Beihai Zhou et al. [20], took four 

axioms (that is, all(x, x), all(x, ¬¬x), all(¬¬x, x) and no(x, ¬x)) 

as the basic axioms, and took the two syllogisms AAA-1 and 

EAE-1 as the initial rules. Using the method of canonical model, 

they proved the soundness and completeness of Aristotelian 

syllogism logic. But this proof was complex and lengthy. 

While this paper only takes all(x, x), some(x, x) and the 

syllogism EIO-1 as basic axioms, and uses the reasoning rules in 

propositional logic and generalized quantifier theory to establish 

a minimalist formal axiom system for Aristotelian syllogism 

logic. Then can we simplify the proof of the soundness and 

completeness of Aristotelian syllogism logic by using 

generalized quantifier theory? This problem needs further study. 

5. Conclusion 

This paper shows that the remaining 23 valid syllogisms 

can be derived only from the syllogisms EIO-1 by making the 

best of the definitions of three negative quantifiers of 

Aristotelian quantifiers in generalized quantifier theory, the 

symmetry of Aristotelian quantifiers no and some, and 
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reasoning rules in propositional logic. And the proof of 

reduction between/among different figures and forms of 

syllogisms is simple and clear. 

This innovative research shows that formalized logic has 

the characteristics of structuralism, that is, it studies not only 

the forms and laws of thinking, but also the structure of 

thinking objects and the relationship between structures. And 

this paper provides a research paradigm for other kinds of 

syllogistic, such as generalized syllogistic, rational syllogistic, 

Aristotelian modal syllogistic and generalized modal 

syllogistic. Therefore, this study is not only beneficial to the 

further development of various syllogistic logics, but also to 

natural language information processing in computer science, 

and also to knowledge representation and knowledge 

reasoning in Artificial Intelligence. 
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