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Abstract: Soliton equations are infinite-dimensional integrable systems described by nonlinear partial differential equations.
In the mathematical theory of soliton equations, the discovery of integrability of these equations has greatly promoted the
understanding of their generality, and thus promoted their rapid development. A key feature of an integrable nonlinear evolution
equation is the fact that it can be expressed as the compatibility condition of two linear spectral problems, i.e., a Lax pair, which
plays a crucial roles in the Darboux transformation. A major difficulty, however, is the problem of associating nonlinear
evolution equations with appropriate spectral problems. Therefore, it is interesting for us to search for the new spectral problem
and corresponding nonlinear evolution equations. In this paper, a new integrable nonlinear wave model and its integrable
nonlinear reduction are presented by using the introduced 2 × 2 matrix spectral problem. Based on the resulting gauge
transforms between the 2 × 2 matrix Lax pairs, Darboux transforms are derived for the integrable nonlinear wave model and its
integrable nonlinear reduction, from which an algebraic algorithm for solving this integrable nonlinear wave model and its
integrable nonlinear reduction is given. As an application of the Darboux transform, explicit exact solutions of the integrable
nonlinear reduction are obtained, including solitons, breathers, and rogue waves.
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1. Introduction

The discovery of many solitons and integrable systems
and the in-depth study of their mathematical and physical
properties is one of the great advances in nonlinear science,
and it has been applied in a series of scientific and
technological fields. A lot of mathematical theories, such as
symplectic manifold, spectral theory of differential operators,
partial differential equations, Lie algebras and Lie groups
and their representation theory, algebraic curves and so
on, have become important tools in the study of soliton
theory. In turn, the research progress of soliton theory
promotes the development of these subdisciplines. Several
systematic approaches have been proposed to solve these
integrable nonlinear equations, for example, the inverse
scattering transform [1], algebraic curve method [2, 3, 4, 12],
Darboux transform [5, 6, 7, 8], and other methods [9, 10,

11]. By using these methods, explicit exact solutions to
many integrable nonlinear equations are constructed, including
soliton solutions, quasiperiodic solutions, breather solutions,
rogue-wave solutions, peakon solutions, etc [13, 14, 15, 16,
17, 18, 19, 20].

Darboux transform (DT) is a very useful tool for solving
integrable nonlinear equations. It can be used to generate
new solutions from various known solutions. Furthermore,
this process may proceed continuously, usually resulting in a
series of exact solutions. In this article, one proposes a new
integrable nonlinear wave model related to a 2 × 2 matrix
spectral problem

uxt − 2uw + iux + 2iuvux = 0,

vxt − 2vw − ivx − 2iuvvx = 0,

wt − (uv)x = 0,

(1)
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and an integrable reduction (w = w∗, v = u∗)

uxt − 2uw + iux + 2i(|u|2)ux = 0,

wt − (|u|2)x = 0.
(2)

Then their DTs are constructed by resorting to the
introduced gauge transforms between the Lax pairs and the
reduction technique. As an illustrative example of applying
DT, some explicit exact solutions of the integrable nonlinear
reduction equation (2) are obtained, such as solitons, breathers
and rogue waves.

The present paper is organized as follow. In Section 2,
one first derives a Lax pair of the nonlinear wave equation
(1) and then deduces a gauge transform between the Lax
pairs, from which the DT of the nonlinear wave model (1)

is constructed. Using the reduction technique, the DT of the
integrable nonlinear reduction (2) is gained. In Section 3,
appropriate parameters are chosen to get the corresponding
“seed solutions”. Various explicit exact solutions of the
integrable nonlinear reduction (2), such as solitons, breathers
and rogue waves, are given by using the DT.

2. Darboux Transforms

In the present section, one will find a Lax pair of the
nonlinear wave equation (1) and construct its DT. Then, a DT
of the integrable nonlinear reduction (2) is obtained through
the reduction technique. For this purpose, one introduces a Lax
pair, a 2×2 matrix spectral problem and an auxiliary problem,

φx = Uφ, U =

(
iλw (1 + λ)ux
λvx −iλw

)
, φ =

(
φ1
φ2

)
, (3)

φt = V φ, V = − i

2λ

(
1 + λ+ 2uvλ −2(1 + λ)u

2vλ −(1 + λ+ 2uvλ)

)
, (4)

where u, v, w are three potentials, and λ ∈ C is a spectral parameter independent with x and t. By direct calculation, the
following conclusion holds.

Theorem 2.1. Assume that φ satisfies (3) and (4). Then the compatibility condition φxt = φtx generates the zero-curvature
equation, Ut − Vx + [U, V ] = 0, which is exactly the nonlinear wave equation (1).

To derive the DT of (1), a gauge transform of the Lax pair, (3) and (4), is defined by

Φ̂ = T Φ, T =

(
A B
C D

)
, (5)

where

A = 1 +

N∑
k=1

Akλ
k, B = (1 + λ)

N∑
k=1

Bkλ
k−1,

C =

N∑
k=1

Ckλ
k, D = 1 +

N∑
k=1

Dkλ
k.

Suppose that (5) transforms (3) and (4) into a Lax pair of Φ̂:

Φ̂x = Û Φ̂, Φ̂t = V̂ Φ̂. (6)

Then one infers
Û = (Tx + T U)T −1, V̂ = (Tt + T V )T −1. (7)

Substituting (5) into ÛT = Tx + T U, V̂ T = Tt + T V , and comparing the coefficients of λj (1 ≤ j ≤ N) yield

û = u+B1, v̂ = v + C1,

ŵ = w + i
∂

∂x
ln

(
1 +

N∑
k=1

(−1)kAk

)
= w − i ∂

∂x

(
1 +

N∑
k=1

(−1)kDk

)
.

(8)

For fixed N constants λ1, λ2, . . . , λN ∈ C, λj 6= λk
for j 6= k, and all j = 1, 2, · · · , 2N , let ϕ(λj) =
(ϕ1(λj), ϕ2(λj))

T and ψ(λj) = (ψ1(λj), ψ2(λj))
T be a

fundamental system of solutions of (3) and (4) at λ = λj .

Assuming α1, α2, . . . , αN ∈ C are some arbitrary constants,
a general solution of the spectral problems (3) and (4) at λj
is given by ϕ(λj) + αjψ(λj). Therefore, one considers the
following linear algebraic system:
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N∑
k=1

Akλ
k
j +

N∑
k=1

Bkβjλ
k−1
j (1 + λj) = −1,

N∑
k=1

Ckλ
k
j +

N∑
k=1

Dkβjλ
k
j = −βj ,

(9)

with

βj =
ϕ2(λj) + αjψ2(λj)

ϕ1(λj) + αjψ1(λj)
, 1 ≤ j ≤ N. (10)

The constants λj and αj are chosen such that the coefficient matrix of (9) is nondegenerate. Thus, Ak, Bk, Ck, Dk, (1 ≤ k ≤
N), are uniquely given by (9). It’s easy to verify from (9) that(

1 +

N∑
k=1

Akλ
k
j

)(
1 +

N∑
k=1

Dkλ
k
j

)
= (1 + λj)λj

( N∑
k=1

Bkλ
k
j

)( N∑
k=1

Ckλ
k
j

)
, (11)

which means that λj (1 ≤ j ≤ 2N) are the roots of det T . Because det T = 1 when λ = 0, det T can be written as

detT = ANDN

2N∏
j=1

(λ− λj) =

2N∏
j=1

λ− λj
λj

. (12)

The above results show that λ = λj (1 ≤ j ≤ 2N) are removable isolated singularities of Û and V̂ . Therefore, Û and V̂ for
all λ ∈ C can be defined by analytic continuations. If a gauge transform changes a Lax pair into another Lax pair of the same
type, one calls it a DT of the integrable nonlinear equation related to the Lax pair.

Theorem 2.2. The Lax matrix Û given by (7)-(10) possesses the same form as the Lax matrix U

Û =

(
iλŵ (1 + λ)ûx
λv̂x −iλŵ

)
, (13)

where new potentials û, v̂, ŵ are determined by the DT (8).
Proof Take adj(T ) = (det T )T −1 and Let

(Tx + T U) adj(T ) =

(
h11(λ) h12(λ)
h21(λ) h22(λ)

)
. (14)

It’s obvious that hsl(λ) (s, l = 1, 2) are polynomials of order (2N + 1) for λ. Noting (4), (9) and (10), one arrives at

βj,x = −(1 + λj)uxβ
2
j − 2iλjwβj + λjvx,

Ax(λj) = −βj,xB(λj)− βjBx(λj),

Cx(λj) = −βj,xD(λj)− βjDx(λj), (1 ≤ j ≤ 2N).

(15)

It’s easy to verify that λj (1 ≤ j ≤ 2N) are roots of hsl(λ) (s, l = 1, 2) with the aid of (14) and (15). Thus, (Tx +
T U) adj(T ) = (det T )Q(λ), where

Q(λ) =

(
Q

(1)
11 λ+Q

(0)
11 Q

(1)
12 λ+Q

(0)
12

Q
(1)
21 λ+Q

(0)
21 Q

(1)
22 λ+Q

(0)
22

)
, (16)

and Q(s)
kl ( s = 0, 1; k, l = 1, 2) are independent of λ. Thus, one obtains

Tx + T U = Q(λ)T . (17)

Comparing the corresponding coefficients of λj (1 ≤ j ≤ N + 1) in (17) yields

Q
(1)
11 = iŵ, Q

(0)
11 = 0, Q

(1)
12 = ûx, Q

(0)
12 = ûx,

Q
(1)
21 = v̂x, Q

(0)
21 = 0, Q

(1)
22 = −iŵ, Q

(0)
22 = 0.

(18)
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This shows that Û and U have the same form.
Theorem 2.3. The Lax matrix V̂ determined by (7)-(10) possesses the same form as the Lax matrix V

V̂ = − i

2λ

(
1 + λ+ 2ûv̂λ −2(1 + λ)û

2v̂λ −(1 + λ+ 2ûv̂λ)

)
, (19)

where new potentials û, v̂, ŵ are given by the DT (8).
Proof Take adj(T ) = (det T )T −1 and

(Tt + T V ) adj(T ) = − i

2λ

(
l11(λ) l12(λ)
l21(λ) l22(λ)

)
. (20)

It’s not difficult to verify that lkl(λ), (k, l = 1, 2), are polynomials of order (2N + 1) for λ.
From (4), (9) and (10), one gets

βj,t = − i

2λ
[2(1 + λ)uβ2

j − 2(1 + λ+ 2uvλ)βj + 2vλ],

At(λj) = −βj,tB(λj)− βjBt(λj),
Ct(λj) = −βj,tD(λj)− βjDt(λj), (1 ≤ j ≤ 2N).

(21)

In a similar way, one can prove that λj , (1 ≤ j ≤ 2N), are roots of lkl(λ), (k, l = 1, 2) in terms of (20) and (21).
Therefore, (Tt + T V ) adj(T ) = (det T )R(λ), where

R(λ) = − i

2λ

(
r
(1)
11 λ+ q

(0)
11 r

(1)
12 λ+ q

(0)
12

r
(1)
21 λ+ q

(0)
21 r

(1)
22 λ+ q

(0)
22

)
, (22)

and r(s)kl , ( s = 0, 1; k, l = 1, 2), are independent of λ. Thus, (20) may be read as

Tt + T V = R(λ)T . (23)

By equating the coefficients of λj , (−1 ≤ j ≤ N) in (23), one can arrive at

r
(1)
11 = 1 + 2ûv̂, r

(0)
11 = 1, r

(1)
12 = −2û, r

(0)
12 = −2û,

r
(1)
21 = 2v̂, r

(0)
21 = 0, r

(1)
22 = −(1 + 2ûv̂), r

(0)
22 = −1.

This completes the proof.
On the basis of Theorems 2 and 3, the transforms (5) and (8)

convert the Lax pair (3) and (4) to the Lax pair (6) of the same
type. Therefore, one immediately gets the following result.

Theorem 2.4. Let (u, v, w) be a solution of the nonlinear
wave model (1). Then, (û, v̂, ŵ) determined by the DT (8)

is a new solution of the nonlinear wave model (1), where Ak,
Bk, Ck, Dk of (8) are uniquely given by the linear algebraic
system (9).

In the following, the DT of the integrable reduction model
(2) is discussed. Under the constraints v = u∗, w = w∗, (1)
turn into (2), and the corresponding Lax pair becomes

φx = Uφ, U =

(
iλw (1 + λ)ux
λu∗x −iλw

)
, φ =

(
φ1
φ2

)
, (24)

φt = V φ, V = − i

2λ

(
1 + λ+ 2|u|2λ −2(1 + λ)u

2u∗λ −(1 + λ+ 2|u|2λ)

)
. (25)

Two solutions of(24) and (25) are chosen as

ϕ(λ) = (ϕ1(λ), ϕ2(λ))T , ψ(λ) = ((1 + λ)ϕ∗
2(λ∗), λϕ∗

1(λ∗))T . (26)

Assume that
λ2j = λ∗2j−1, α2j = λ−1

2j (1 + λ2j)
−1(α∗

2j−1)−1, (1 ≤ j ≤ N). (27)
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A straightforward calculation shows that β2j = λ2j(1 + λ2j)
−1(β∗

2j−1)−1, Dk = A∗
k, Ck = B∗

k , (1 ≤ j ≤ N), and

v̂ = v + C1 = u∗ +B∗
1 = (u+B1)∗ = û∗, (28)

ŵ = w + i
∂

∂x
ln

(
1 +

N∑
k=1

(−1)kAk

)
= w∗ + i

∂

∂x
ln

(
1 +

N∑
k=1

(−1)kD∗
k

)
(29)

=

[
w + i

∂

∂x
ln

(
1−

N∑
k=1

(−1)kDk

)]∗
= ŵ∗, (30)

β2j−1 =
ϕ2(λ2j−1) + α2j−1λ2j−1ϕ

∗
1(λ∗2j−1)

ϕ1(λ2j−1) + α2j−1(1 + λ2j−1)ϕ∗
2(λ∗2j−1)

, (1 ≤ j ≤ N), (31)

where Ak and Bk are determined by

N∑
k=1

Akλ
k
2j−1 +

N∑
k=1

Bkβ2j−1λ
k−1
2j−1(1 + λ2j−1) = −1,

N∑
k=1

Akβ
∗
2j−1(λ∗2j−1)k +

N∑
k=1

Bk(λ∗2j−1)k = −β∗
2j−1, (1 ≤ j ≤ N).

(32)

For example, when N = 1 and when N = 2, one obtains from (32), respectively, that

A1 = − (λ1 + 1)|β1|2 − λ∗1
λ∗1[(λ1 + 1)|β1|2 − λ1]

, B1 =
(λ1 − λ∗1)β∗

1

λ∗1[(λ1 + 1)|β1|2 − λ1]
, (33)

and 
A1

A2

B1

B2

 = −


λ1 λ21 (1 + λ1)β1 λ1(1 + λ1)β1
λ∗1β

∗
1 (λ∗1)2β∗

1 λ∗1 (λ∗1)2

λ3 λ23 (1 + λ3)β3 λ3(1 + λ3)β3
λ∗3β

∗
3 (λ∗3)2β∗

3 λ∗3 (λ∗3)2


−1

1
β∗
1

1
β∗
3

 . (34)

Then, one arrives at the following result.
Theorem 2.5. Let (u, v) be a solution of the integrable reduction model (2). Assume the DT reads

û = u+B1, ŵ = w + i
∂

∂x
ln

(
1 +

N∑
k=1

(−1)kAk

)
, (35)

where B1 and Ak, (1 ≤ k ≤ N), are determined by the system of linear algebraic equations (32). Then (û, ŵ) given by the DT
(35) is a new solution of the integrable reduction model (2).

3. Exact Solutions of the Integrable Reduction Model

In this section, exact solutions of the integrable reduction model (2) will be constructed by applying the DT (35). Substituting
the seed solution (u, v) = (0, 1) of (2) into (24) and (25) yields a fundamental system of solutions,

ϕ(λ) =

(
eiλx−

i
2 (1+λ

−1)t

0

)
, ψ(λ) =

(
0

e−iλx+
i
2 (1+λ

−1)t

)
. (36)

According to (31), one deduces

β2j−1 = α2j−1e
−2iλ2j−1x+i(1+λ

−1
2j−1)t, 1 ≤ j ≤ N. (37)

When N = 1 and choosing α1 = 1− i and λ1 = 1
2 (1 + i), one obtains from (33) and (35) that

û =
−2ie(1+i)x+(1−2i)t

1− (2− i)e2x+2t
, ŵ =

1 + 5e4x+4t

1− 4e2(x+t) + 5e4(x+t)
. (38)
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See Figure 1 for an illustration of (38).

Figure 1. A one-soliton solution.

For N = 2, assume α1 = 1, α3 = 1, λ1 = 1 + i. λ3 = 1
2 (1 + i). A two-soliton solution is obtained by using (32), (31) and

(35), which is illustrated in Figure 2.

Figure 2. A two-soliton solution.

Choosing α1 = 1, α3 = 1, λ1 = 1+ i and λ3 = −1+ i, and using the DT (35), one arrives at a breather solution. See Figure 3
for an illustration.

Figure 3. A breather solution.

Let the seed solution be u = eix and w = − 3
2 , and choose the parameter λ1 = − 1

5 + 2i
5 . Then, from the spectral problems

(24) and (25), one deduces

ϕ(λ1) =

(
−i[(1 + 2i) + (1− 3i)t+ (1 + i)x]eix/2

[−(1 + 2i)t+ x]e−ix/2

)
, ψ(λ1) =

(
(1− i)eix/2
e−ix/2

)
. (39)

Choosing α1 = 0 implies from (32), (31) and (35) that

û = eix
(
−1 +

10 + (8− 8i)x

5 + (10 + 10i)t2 + 6x+ (2 + 2i)x2 − 10t− (4 + 4i)xt

)
,

ŵ = −3

2
+ 2

∂

∂x
arctan

(
2x2 − 4xt+ 10t2

2x2 − 4xt+ 6x+ 10t2 − 10t+ 5

)
.

(40)

This is a rogue-wave solution as illustrated in Figure 4.
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Figure 4. A rogue-wave solution.

4. Conclusions

In the present paper, one introduces a 2 × 2 matrix
spectral problem and derives a new integrable nonlinear
wave system. The system is in itself interesting and is
simplified to a novel integrable complex nonlinear wave
equation. One finds the gauge transform between the Lax
pairs of the integrable nonlinear wave system and constructs
its Darboux transforms. Through the reduction technique,
Darboux transforms of the integrable nonlinear reduction
equation are obtained by analysing the symmetries of the
Lax pair. On this basis, an algebraic algorithm is given to
solve the integrable nonlinear wave system and its integrable
nonlinear reduction. As an illustrative example of our
method, some explicit exact solutions of the integrable
nonlinear reduction equation are constructed by resorting to
the resulting Darboux transform and Mathematica software,
including soliton solutions, breather solutions, rogue-wave
solutions. These results are very convenient for application
and analysis. In addition to this, one knows even less about the
integrable nonlinear wave system and its integrable nonlinear
reduction. Whether the integrable nonlinear wave system and
its integrable nonlinear reduction have Bäcklund transform,
conserved quantity, Hamiltonian structure and other properties
is still a problem to be solved and will be discussed later.
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