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Abstract: Typhoid fever is a disease caused by the bacteria Salmonella Typhi through the ingestion of contaminated food
or water, and it is still serious in developing countries. The infection routes include both human-to-human transmission and
environment-to-human transmission. It was observed that higher incidence of typhoid fever occur during the rainy season and
people living near water bodies may have a higher rate of typhoid infection. On the other hand, asymptomatically infected
individuals also play a central role in the transmission of typhoid since they are not experiencing any symptoms but they are able
to shed S. Typhi into the environment for years. Thus, a well-described model of the Typhoid transmission should include the
asymptomatical compartment and the factors of spatial homogeneity and seasonality. This motivates us to develop a periodic
two-patch system to investigate the spatial and seasonal effects on the transmission of Typhoid fever, in which the bacteria in
the environment is included, and the population of human is divided into five classes, namely, susceptible individuals, infected
individuals, carrier individuals, individuals under treatment and recovered individuals. We first introduce the basic reproduction
number for the model, then we show that the extinction/persistence of Typhoid can be determined by R0. Our numerical results
indicate that an outbreak of Typhoid fever in a two-patch environment could be eliminated if migration between patches is
prohibited. Finally, we also numerically observe that the infection risks of Typhoid may be underestimated if seasonal effects are
ignored.

Keywords: Typhoid Fever, Spatial Homogeneity, Seasonal Effects, Basic Reproduction Number, Threshold Dynamics

1. Introduction
Typhoid fever is an infection caused by the bacteria

Salmonella Typhi (S. Typhi), which is usually spread by
ingesting contaminated food/water. According to the World
Health Organization, typhoid is still endemic in several
developing countries. The infection routes of Typhoid include
both direct (i.e.human-to-human) transmission and indirect
(i.e. environment-to-human) transmission, which is associated
with the ingestion of contaminated food/water. It is worth
pointing out that asymptomatically infected individuals also

play an important role in the transmission of typhoid since
they are not experiencing any symptoms but they are able to
shed S. Typhi into the environment for many years, thereby
sustaining transmission [15, 16]. Those observations motivate
the authors in [16] developed a system of ordinary differential
equations to model the spread of typhoid, where the factors
of limited treatment resources on the spread of typhoid was
further included.

Our aim of this paper is to incorporate spatial and temporal
effects into the model proposed in [16]. During the rainy
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season, a large increase of flooding may occur by the rainfall
and the water resources is contaminated by the excreta with
pathogenic bacteria, resulting in a higher incidence of typhoid
fever [12, 13]. It was evident that the supply of clean and
safe drinking water plays an important role in controlling
typhoid infection, and people living near water bodies (e.g.
rivers) may have a higher rate of typhoid infection [4]. Thus,
the effect of spatial homogeneity should be included. To
develop spatially explicit models, there are two common
approaches. The first one is a continuum approach using an
advection-dispersion-reaction system to describe the transport
and interaction of population in a (bounded) habitat. Here we
adopt the second approach, namely, we can divide the habitat
into several areas, and the population gradient between areas
is simply described by the migration of population. To make
mathematical analysis more tractable, we will focus on the
case that the habitat is divided into two areas, which is also

referred to as ”two-patch model”. On the other hand, it is
confirmed that temperature changes have significant impacts
on the enteric diseases [9, 10], and the increase in rainfall and
temperature lead to more typhoid fever cases in the study area
[4]. Thus, it is natural to further explore the seasonal variations
in temperature and rainfall on the transmission of typhoid.
Based on those aforementioned facts, we shall propose and
analyze a time-periodic system in a two-patch environment
which is modified from the one in [16].

The population of human at time t in path i is divided
into five classes: susceptible individuals (Si(t)), infected
individuals (Ii(t) ), carrier individuals (Ci(t)), individuals
under treatment (Qi(t) ) and recovered individuals (Ri(t)).
Besides, Bi(t) stands for the density of bacteria in the
environment in patch i at time t. Then the extended version
of the model in [16] takes the following form:



dS1

dt = Λ1 −
βC1

(t)(I1+η1C1)S1

S1+I1+C1+Q1+R1
− βB1

(t)B1S1

B1+KB1
− µ1S1 + ρ1R1 −mS

12S1 +mS
21S2,

dI1
dt =

βC1
(t)(I1+η1C1)S1

S1+I1+C1+Q1+R1
+

βB1
(t)B1S1

B1+KB1
− (µ1 + σ1 + δI1 + εI1)I1 − θ1I1 −mI

12I1 +mI
21I2,

dC1

dt = σ1I1 − (µ1 + δC1
+ εC1

)C1 −mC
12C1 +mC

21C2,
dQ1

dt = θ1I1 − (µ1 + γ1 + δQ1
)Q1,

dR1

dt = γ1Q1 + εI1I1 + εC1
C1 − (µ1 + ρ1)R1 −mR

12R1 +mR
21R2,

dB1

dt = g1B1 + αI1(t)I1 + αC1
(t)C1 − µB1

B1 −mB
12B1 +mB

21B2,
dS2

dt = Λ2 −
βC2

(t)(I2+η2C2)S2

S2+I2+C2+Q2+R2
− βB2

(t)B2S2

B2+KB2
− µ2S2 + ρ2R2 +mS

12S1 −mS
21S2,

dI2
dt =

βC2
(t)(I2+η2C2)S2

S2+I2+C2+Q2+R2
+

βB2
(t)B2S2

B2+KB2
− (µ2 + σ2 + δI2 + εI2)I2 − θ2I2 +mI

12I1 −mI
21I2,

dC2

dt = σ2I2 − (µ2 + δC2
+ εC2

)C2 +mC
12C1 −mC

21C2,
dQ2

dt = θ2I2 − (µ2 + γ2 + δQ2
)Q2,

dR2

dt = γ2Q2 + εI2I2 + εC2
C2 − (µ2 + ρ2)R2 +mR

12R1 −mR
21R2,

dB2

dt = g2B2 + αI2(t)I2 + αC2
(t)C2 − µB2

B2 +mB
12B1 −mB

21B2,

Si(0) ≥ 0, Ii(0) ≥ 0, Ci(0) ≥ 0, Qi(0) ≥ 0, Ri(0) ≥ 0, Bi(0) ≥ 0, i = 1, 2.

(1)

The constant Λi represents the recruitment of susceptible
population, and µi represents the natural death rate for
the general population in the environment of patch i.
Susceptible people are infected either through human-to-
human transmission at the rate βCi (t)(Ii+ηiCi)Si

Si+Ii+Ci+Qi+Ri
or through

the environmental bacteria from contaminated drinking
water/food at the rate βBi (t)BiSi

Bi+KBi
. The parameter βCi(t) is the

so-called typhoid transmission rate for susceptible individuals
and infected/carrier individuals, and ηi is used to measure
the relative infectiousness of carriers Ci compared to infected
individuals Ii. We will assume 0 < ηi < 1 when the carriers
Ci have less infectious ability than infected individuals Ii.
Otherwise, we will assume that ηi ≥ 1. The parameter βBi(t)
is the per capita contact rate between susceptible individuals
and the contaminated environment, and KBi is the saturation
constant. Infected individuals progress to the carrier class
at the rate σi; the naturally recovery rate for infected (resp.
carrier) individuals is denoted by εIi (resp. εCi ); the mortality
rate due to disease for infected (resp. carrier) individuals
is denoted by δIi (resp. δCi ); the parameter αIi(t) (resp.
αCi(t)) represents the shedding rate of bacteria by infected

(resp. carrier) individuals. The recruitment into treatment
class is denoted by θiIi. The mortality rate due to illness in
patients under treatment is δQi , and its recovery rate is γi.
The recovered individuals will only be temporarily immune
to typhoid, leading to the individual being susceptible again
at the rate ρi. The generation rate of bacteria is expressed in
terms of giBi, where gi is a constant; the production rates
of bacteria from infected persons and carriers are denoted
by αIi(t) and αCi(t), respectively. We further assume that
the bacteria in the environment becomes non-infectious at a
rate µBi . Here, for w = S, I, C,R,B, mw

21 represents the
immigration rate of population w from patch 2 to patch 1,
while mw

12 represents the immigration rate of population w
from patch 1 to patch 2. We also point out that the class Qi,
i = 1, 2, represents the typhoid patients who are detected and
quarantined symptomatic and chronic enteric carriers. Thus,
Qi, i = 1, 2 is supposed to be on treatment, and those terms
−mQ

12Q1+mQ
21Q2 andmQ

12Q1−mQ
21Q2 are ignored in system

(1), due to the fact that the population Qi cannot move in
the environment. This makes our mathematical analysis more
difficult and challenging.
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In the whole paper, we always assume that βCi(t), βBi(t),
αIi(t), and αCi(t) are ω-periodic functions, for i = 1, 2, and

µBi − gi > 0, ∀ i = 1, 2, (2)

which coincides with the parameters given in the table on
page 664 of [16]. The organization of the rest of this paper
is as follows. The well-posedness of our proposed model
and the basic reproduction number, R0, are discussed in
the next section. In Section 3, we show that the global
dynamics of our proposed model can be determined in terms
of the basic reproduction number, R0. Numerical simulations

and biological interpretations are presented in Section 4 and
Section 5, respectively.

2. The Reproduction Number
We first consider the following system

dS1

dt = Λ1 − (µ1 +mS
12)S1 +mS

21S2,
dS2

dt = Λ2 +mS
12S1 − (µ2 +mS

21)S2,

Si(0) ≥ 0, i = 1, 2.

(3)

Let

(S∗1 , S
∗
2 ) = (

Λ1(µ2 +mS
21) + Λ2m

S
21

µ1µ2 + µ1mS
21 + µ2mS

12

,
Λ2(µ1 +mS

12) + Λ1m
S
12

µ1µ2 + µ1mS
21 + µ2mS

12

). (4)

Then we can verify that system (3) is a cooperative system
(see, e.g., [19]) and (S∗1 , S

∗
2 ) is the only positive steady state.

Thus, we have the following result concerning with the global
stability of (S∗1 , S

∗
2 ) (see, e.g., [8]).

Lemma 2.1. The positive steady state (S∗1 , S
∗
2 ) is globally

attractive in R2
+ for system (3). That is, we have

lim
t→∞

(S1(t), S2(t)) = (S∗1 , S
∗
2 ), ∀ (S1(0), S2(0)) ∈ R2

+.

We further have the following result:
Lemma 2.2. System (1) has a unique and bounded solution

with the initial value in R12
+ , which is positively invariant.

Moreover, system (1) has a connected global attractor on R12
+

in the sense that it attracts all positive orbits in R12
+ .

Proof We show that system (1) admits a unique
noncontinuable solution and the solutions to (1) remain non-
negative if they are non-negative initially. In view of [19,
Theorem 5.2.1], we can show that for any x0 ∈ R12

+ , system
(1) has a unique local solution u(t, x0) ∈ R12

+ with u(0, x0) =
x0. This shows the positive invariance of R12

+ for system (1).
Next, we show that the solutions u(t, x0) for system (1) are
eventually bounded. For this end, we let{

N1(t) = S1(t) + I1(t) + C1(t) +Q1(t) +R1(t)

N2(t) = S2(t) + I2(t) + C2(t) +Q2(t) +R2(t).
(5)

Then we substitute N(t) = N1(t) +N2(t) into system (1), and it follows that

dN

dt
= Λ1 + Λ2 − µ1N1 − µ2N2 − δI1I1 − δC1

C1 − δQ1
Q1 − δI2I2 − δC2

C2 − δQ2
Q2.

By the positivity of solutions, we see that

dN

dt
≤ Λ1 + Λ2 − µN1 − µN2 = Λ1 + Λ2 − µN.

where µ = min{µ1, µ2}. Thus, lim supt→∞N(t) ≤ Λ1+Λ2

µ . This means that N(t) is ultimately bounded. Since solutions of (1)
are nonnegative, it follows from (5) that
Si(t), Ii(t), Ci(t), Qi(t), and Ri(t) are ultimately bounded, for i = 1, 2. Then there exists a τ0 > 0 and χi > 0 such that

αIi(t)Ii(t) + αCi(t)Ci(t) ≤ χi, ∀ t ≥ τ0, i = 1, 2.

This inequality together with the sixth and twelfth equations of (1) imply that{
dB1

dt ≤ χ1 − (µB1
− g1 +mB

12)B1 +mB
21B2, ∀ t ≥ τ0,

dB2

dt ≤ χ2 +mB
12B1 − (µB2

− g2 +mB
21)B2, ∀ t ≥ τ0.

In view of the assumption (2), we see that

µ01 := µB1 − g1 > 0 and µ02 := µB2 − g2 > 0.

By Lemma 2.1 and the comparison principle, it follows that

lim sup
t→∞

(B1(t), B2(t)) ≤ (
χ1(µ02 +mB

21) + χ2m
B
21

µ01µ02 + µ01mB
21 + µ02mB

12

,
χ2(µ01 +mB

12) + χ1m
B
12

µ01µ02 + µ01mB
21 + µ02mB

12

),
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which reveals that B1(t) and B2(t) are also eventually bounded. Therefore, we have established the global existence for the
solutions of system (1), and the rest of the result follows [7, Theorem 3.4.8].

The disease-free state of system (1), E0, takes the following form

E0 = (S∗1 , 0, 0, 0, 0, 0, S
∗
2 , 0, 0, 0, 0, 0), (6)

where (S∗1 , S
∗
2 ) is given in (4). We linearize system (1) at the disease-free state E0 and we arrive at the following linear system

dI1
dt = [βC1

(t)− (µ1 + σ1 + δI1 + εI1 + θ1)]I1 + η1βC1
(t)C1 + S∗1

βB1
(t)

KB1
B1 −mI

12I1 +mI
21I2,

dC1

dt = σ1I1 − (µ1 + δC1
+ εC1

)C1 −mC
12C1 +mC

21C2,
dB1

dt = g1B1 + αI1(t)I1 + αC1(t)C1 − µB1B1 −mB
12B1 +mB

21B2,
dI2
dt = [βC2

(t)− (µ2 + σ2 + δI2 + εI2 + θ2)]I2 + η2βC2
(t)C2 + S∗2

βB2
(t)

KB2
B2 +mI

12I1 −mI
21I2,

dC2

dt = σ2I2 − (µ2 + δC2
+ εC2

)C2 +mC
12C1 −mC

21C2,
dB2

dt = g2B2 + αI2(t)I2 + αC2(t)C2 − µB2B2 +mB
12B1 −mB

21B2.

(7)

Note that system (7) is cooperative (see, e.g., [19]) and irreducible (see a simple test on page 256 of [20]). From system (7),
we define

F(t) =



βC1
(t) η1βC1

(t) S∗1
βB1

(t)

KB1
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 βC2
(t) η2βC2

(t) S∗2
βB2

(t)

KB2

0 0 0 0 0 0
0 0 0 0 0 0


(8)

and

V(t) =


V11 +mI

12 0 0 −mI
21 0 0

−σ1 V22 +mC
12 0 0 −mC

21 0
−αI1(t) −αC1(t) V33 +mB

12 0 0 −mB
21

−mI
12 0 0 V44 +mI

21 0 0
0 −mC

12 0 −σ2 V55 +mC
21 0

0 0 −mB
12 −αI2(t) −αC2

(t) V66 +mB
21

 (9)

where V11 = µ1 + σ1 + δI1 + εI1 + θ1, V22 = µ1 + δC1
+ εC1

, V33 = µB1
− g1, V44 = µ2 + σ2 + δI2 + εI2 + θ2,

V55 = µ2 + δC2
+ εC2

, and V66 = µB2
− g2.

Assume Y (t, s), t ≥ s, is the evolution operator of the linear ω-periodic system

dy(t)

dt
= −V(t)y,

and I stands for the identity matrix with size 6. Then, for each s ∈ R, the 6× 6 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V(t)Y (t, s), ∀ t ≥ s, Y (s, s) = I.

Assume that Cω represents the ordered Banach space of all
ω-periodic functions from R to R6, which is equipped with
the maximum norm ‖ · ‖. The associated positive cone C+

ω

is defined by C+
ω := {φ ∈ Cω : φ(t) ≥ 0, ∀ t ∈ R}.

Suppose that φ(s), ω-periodic in s, is the initial distribution
of infectious individuals. Then the next infection operator
L : Cω → Cω is defined by ([3, 5, 22])

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F(t− a)φ(t− a)da, ∀ t ∈ R, φ ∈ Cω.

Then the basic reproduction number is given byR0 := r(L), the spectral radius of L.
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Wang and Zhao [22] further provide an idea to numerically calculate R0. For a parameter λ ∈ (0,∞), we assume that
W(t, s, λ), t ≥ s, s ∈ R is the evolution operator of the linear ω-periodic system on R6,

dw

dt
=

(
−V(t) +

F(t)

λ

)
w, t ∈ R.

By [22, Theorem 2.1] , we have the following results.
Lemma 2.3. Assume that ρ(W(ω, 0, λ)) stands for the

spectral radius ofW(ω, 0, λ). Then
1. If the algebraic equation ρ(W(ω, 0, λ)) = 1 admits a

positive solution λ0, then λ0 is an eigenvalue of the
operator L, and henceR0 > 0.

2. λ = R0 will be the unique solution of ρ(W(ω, 0, λ)) =
1 ifR0 > 0.

3. R0 = 0 if and only if ρ(W(ω, 0, λ)) < 1 for all λ > 0.
Suppose ΦF(·)−V(·)(t) is the monodromy matrix of the linear

ω-periodic differential system dz(t)
dt = (F(t) − V(t))z, and

r(ΦF(·)−V(·)(ω)) is the spectral radius of ΦF(·)−V(·)(ω). By
[22, Theorem 2.2], we further have the following result:

Lemma 2.4.R0− 1 and r(ΦF(·)−V(·)(ω))− 1 have the same
sign. That is, the state E0 is locally asymptotically stable if
R0 < 1, and unstable ifR0 > 1.

3. Global Dynamics

We first consider the linear ordinary differential system

dx(t)

dt
= A(t)x, (10)

where A(t) is a continuous, cooperative, irreducible, and ω-
periodic k × k matrix function. Assume that ΦA(·)(t) is the
monodromy matrix of (10) and r(ΦA(·)(ω)) is the spectral
radius of ΦA(·)(ω). In view of [1, Lemma 2] (see also [6,
Theorem 1.1]) and the Perron-Frobenius theorem [19], we see
that r(ΦA(·)(ω)) is the principal eigenvalue of ΦA(·)(ω).

We further have the following results:
Lemma 3.1. ([23, Lemma 2.1]) Let λ = 1

ω ln r(ΦA(·)(ω)).
Then there exists a positive, ω-periodic function v(t) such that
eλtv(t) is a solution of (10).

For further discussions, we need the following property.

Lemma 3.2. Assume that

(S1(t), I1(t), C1(t), Q1(t), R1(t), B1(t), S2(t), I2(t), C2(t), Q2(t), R2(t), B2(t))

is a solution of the system (1) with initial value

(S0
1 , I

0
1 , C

0
1 , Q

0
1, R

0
1, B

0
1 , S

0
2 , I

0
2 , C

0
2 , Q

0
2, R

0
2, B

0
2) ∈ R12

+ ,

and
(I0

1 , C
0
1 , B

0
1 , I

0
2 , C

0
2 , B

0
2) 6= (0, 0, 0, 0, 0, 0). (11)

Then
(S1(t), I1(t), C1(t), Q1(t), R1(t), B1(t), S2(t), I2(t), C2(t), Q2(t), R2(t), B2(t))� 0, ∀ t > 0.

Proof In view of the first equation in system (1), it follows that

S1(t) = e−
∫ t
0
b(s1)ds1

[∫ t

0

e
∫ s2
0 b(s1)ds1a(s2)ds2 + S0

1

]
,

where
a(t) := Λ1 + ρ1R1 +mS

21S2 ≥ Λ1 > 0,

and

b(t) :=
βC1

(t)(I1(t) + η1C1(t))

(S1 + I1 + C1 +Q1 +R1)(t)
+

βB1
(t)B1(t)

B1(t) +KB1

+ µ1 +mS
12.

Thus, S1(t) > 0, ∀ t > 0. Same arguments show that S2(t) > 0, ∀ t > 0.
Let

J(t) =


J11(t) J12(t) J13(t) mI

21 0 0
σ1 J22(t) 0 0 mC

21 0
αI1(t) αC1(t) J33(t) 0 0 mB

21

mI
12 0 0 J44(t) J45(t) J46(t)
0 mC

12 0 σ2 J55(t) 0
0 0 mB

12 αI2(t) αC2
(t) J66(t)

 ,
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where 

J11(t) =
βC1

(t)S1(t)

(S1+I1+C1+Q1+R1)(t) − (µ1 + σ1 + δI1 + εI1)− θ1 −mI
12,

J12(t) =
η1βC1

(t)S1(t)

(S1+I1+C1+Q1+R1)(t) , J13(t) =
βB1

(t)S1(t)

B1(t)+KB1
,

J22(t) = −(µ1 + δC1
+ εC1

)−mC
12, J33(t) = g1 − µB1

−mB
12,

J44(t) =
βC2

(t)S2(t)

(S2+I2+C2+Q2+R2)(t) − (µ2 + σ2 + δI2 + εI2)− θ2 −mI
21,

J45(t) =
η2βC2

(t)S2(t)

(S2+I2+C2+Q2+R2)(t) , J46(t) =
βB2

(t)S2(t)

B2(t)+KB2
,

J55(t) = −(µ2 + δC2
+ εC2

)−mC
21, J66(t) = g2 − µB2

−mB
21.

Then the matrix J(t) is cooperative (see, e.g., [19]) and irreducible (see a simple test on page 256 of [20]), where we have used
the fact that Si(t) > 0, ∀ t > 0, i = 1, 2. By (11) and the irreducibility of the cooperative matrix J(t), we can use a generalized
version of [19, Theorem 4.1.1] to show that

(I1(t), C1(t), B1(t), I2(t), C2(t), B2(t))T � 0, ∀ t > 0. (12)

In view of the equations of Q1, Q2, R1 and R2 in system (1), together with (12), we can further show that Qi(t) > 0, Ri(t) >
0, ∀ t > 0, i = 1, 2. We complete the proof.

Let X = R12
+ . Define a family of maps {Ψ(t)}t≥0 from X to X by

Ψ(t)x0 = u(t, x0), ∀ x0 = (S0
1 , I

0
1 , C

0
1 , Q

0
1, R

0
1, B

0
1 , S

0
2 , I

0
2 , C

0
2 , Q

0
2, R

0
2, B

0
2) ∈ X,

where u(t, x0) is the unique solution of system (1) with u(0, x0) = x0 (see Lemma 2.2 and the proof therein). Suppose
P : X→ X is the Poincaré map associated with system (1), that is,

P (x0) = u(ω, x0), ∀ x0 ∈ X.

Note that Pn(x0) = u(nω, x0), ∀ n ≥ 0.
Let

X0 =
{

(S0
1 , I

0
1 , C

0
1 , Q

0
1, R

0
1, B

0
1 , S

0
2 , I

0
2 , C

0
2 , Q

0
2, R

0
2, B

0
2) ∈ X : I0

i > 0, C0
i > 0, B0

i > 0, i = 1, 2
}

and

∂X0 := X\X0 =
{

(S0
1 , I

0
1 , C

0
1 , Q

0
1, R

0
1, B

0
1 , S

0
2 , I

0
2 , C

0
2 , Q

0
2, R

0
2, B

0
2) ∈ X : I0

1 = 0

or I0
2 = 0 or C0

1 = 0 or C0
2 = 0 or B0

1 = 0 or B0
2 = 0

}
.

Lemma 3.3. LetR0 > 1. Then there exists a ς0 > 0 such that for any x0 ∈ X0 with ‖x0 − E0‖ ≤ ς0, we have

lim sup
n→∞

d(Pn(x0), E0) ≥ ς0.

Proof Assume R0 > 1. Then r(ΦF(·)−V(·)(ω)) > 1 ( see Lemma 2.4). Thus, we find a small ξ0 > 0 such that
r(ΦFξ0 (·)−V(·)(ω)) > 1, where Fξ0(t) =



βC1
(t)(S∗

1−ξ0)

S∗
1+5ξ0

η1βC1
(t)(S∗

1−ξ0)

S∗
1+5ξ0

βB1
(t)(S∗

1−ξ0)

ξ0+KB1
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
βC2

(t)(S∗
2−ξ0)

S∗
2+5ξ0

η2βC2
(t)(S∗

2−ξ0)

S∗
2+5ξ0

βB2
(t)(S∗

2−ξ0)

ξ0+KB2

0 0 0 0 0 0
0 0 0 0 0 0


.

Since solutions are continuous with respect to the initial values, we can find a ς0 > 0 such that for any x0 ∈ X0 with
‖x0 − E0‖ ≤ ς0, there holds

‖u(t, x0)− u(t, E0)‖ < ξ0, ∀ t ∈ [0, ω],

Claim. For all x0 ∈ X0 with ‖x0 − E0‖ ≤ ς0, there holds

lim sup
n→∞

d(Pn(x0), E0) ≥ ς0.
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Suppose that the above claim is not true. Then we have

lim sup
n→∞

d(Pn(x0), E0) < ς0,

for some x0 ∈ X0 with ‖x0 − E0‖ ≤ ς0. Without loss of generality, we assume that

d(Pn(x0), E0) < ς0, ∀ n ≥ 0.

It follows that
‖u(t, Pn(x0))− u(t, E0)‖ < ξ0, ∀ t ∈ [0, ω], n ≥ 0.

Given any t ≥ 0, we rewrite t = mω + t′, where t′ ∈ [0, ω), and m is the largest integer less than or equal to t
ω . Therefore, it

follows that
‖u(t, x0)− u(t, E0)‖ = ‖u(t′, Pm(x0))− u(t′, E0)‖ < ξ0 (13)

Note that
(S1(t), I1(t), C1(t), Q1(t), R1(t), B1(t), S2(t), I2(t), C2(t), Q2(t), R2(t), B2(t)) = u(t, x0)

and u(t, E0) = E0, ∀ t ≥ 0. From (13), for all t ≥ 0, we have

S∗i + ξ0 > Si(t) > S∗i − ξ0 > 0, 0 < Ii(t), Ci(t), Qi(t), Ri(t), Bi(t) < ξ0, i = 1, 2.

From the equation of I1 in (1), we see that

dI1
dt

=
βC1

(t)(I1 + η1C1)S1

S1 + I1 + C1 +Q1 +R1
+
βB1

(t)B1S1

B1 +KB1

− (µ1 + σ1 + δI1 + εI1)I1 − θ1I1 −mI
12I1 +mI

21I2

≥ βC1
(t)(I1 + η1C1)(S∗1 − ξ0)

S∗1 + 5ξ0
+
βB1

(t)B1(S∗1 − ξ0)

ξ0 +KB1

− (µ1 + σ1 + δI1 + εI1)I1 − θ1I1 −mI
12I1 +mI

21I2

=
βC1(t)(S∗1 − ξ0)

S∗1 + 5ξ0
I1 +

η1βC1(t)(S∗1 − ξ0)

S∗1 + 5ξ0
C1 +

βB1(t)(S∗1 − ξ0)

ξ0 +KB1

B1 − (µ1 + σ1 + δI1 + εI1)I1

−θ1I1 −mI
12I1 +mI

21I2, t ≥ 0.

From the equation of I2 in (1), we can use the same arguments to show that

dI2
dt
≥ βC2(t)(S∗2 − ξ0)

S∗2 + 5ξ0
I2 +

η2βC2(t)(S∗2 − ξ0)

S∗2 + 5ξ0
C2 +

βB2(t)(S∗2 − ξ0)

ξ0 +KB2

B2

−(µ2 + σ2 + δI2 + εI2)I2 − θ2I2 +mI
12I1 −mI

21I2, t ≥ 0.

Then, for t ≥ 0, we further have the following inequalities

dI1
dt ≥

βC1
(t)(S∗

1−ξ0)

S∗
1+5ξ0

I1 +
η1βC1

(t)(S∗
1−ξ0)

S∗
1+5ξ0

C1 +
βB1

(t)(S∗
1−ξ0)

ξ0+KB1
B1

−(µ1 + σ1 + δI1 + εI1)I1 − θ1I1 −mI
12I1 +mI

21I2,
dC1

dt = σ1I1 − (µ1 + δC1
+ εC1

)C1 −mC
12C1 +mC

21C2,
dB1

dt = g1B1 + αI1(t)I1 + αC1
(t)C1 − µB1

B1 −mB
12B1 +mB

21B2,
dI2
dt ≥

βC2
(t)(S∗

2−ξ0)

S∗
2+5ξ0

I2 +
η2βC2

(t)(S∗
2−ξ0)

S∗
2+5ξ0

C2 +
βB2

(t)(S∗
2−ξ0)

ξ0+KB2
B2

−(µ2 + σ2 + δI2 + εI2)I2 − θ2I2 +mI
12I1 −mI

21I2,
dC2

dt = σ2I2 − (µ2 + δC2
+ εC2

)C2 +mC
12C1 −mC

21C2,
dB2

dt = g2B2 + αI2(t)I2 + αC2
(t)C2 − µB2

B2 +mB
12B1 −mB

21B2.

(14)

In view of the fact x0 ∈ X0 and Lemma 3.2, it follows that

(I1(t), C1(t), B1(t), I2(t), C2(t), B2(t))T � 0, ∀ t > 0.

Thus, we find a fixed t̃0 > 0 such that

(I1(t̃0), C1(t̃0), B1(t̃0), I2(t̃0), C2(t̃0), B2(t̃0))� 0.
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In view of Lemma 3.1, we may find a positive, ω-periodic function J(t) and J̃(t) := d̃eλ̃(t−t̃0)J(t) is a solution of

dx(t)

dt
= (Fξ0(t)− V(t))x(t).

Here λ̃ := 1
ω ln [r(ΦFξ0 (·)−V(·)(ω))] and d̃ is small enough such that

J̃(t̃0) = d̃J(t̃0) ≤ (I1(t̃0), C1(t̃0), B1(t̃0), I2(t̃0), C2(t̃0), B2(t̃0)).

The comparison argument (see, e.g., [20, Theorem B.1]) and the inequalities (14) establish that

(I1(t), C1(t), B1(t), I2(t), C2(t), B2(t))T ≥ J̃(t), ∀ t ≥ t̃0.

In particular, there exists n1 such that

(I1(nω), C1(nω), B1(nω), I2(nω), C2(nω), B2(nω))T ≥ J̃(nω), ∀ n ≥ n1.

Since λ̃ > 0, it follows that J̃(nω)→∞ as n→∞. Thus,

(I1(nω), C1(nω), B1(nω), I2(nω), C2(nω), B2(nω))T →∞

as n→∞. This contradiction completes the proof.
Next, we show thatR0 is an important index for disease persistence.
Theorem 3.1. The statements are valid.
1. IfR0 < 1 and ρ1 = ρ2 = 0, then the disease-free state E0 is globally attractive for system (1) in the sense that

lim
t→∞

(S1(t), I1(t), C1(t), Q1(t), R1(t), B1(t), S2(t), I2(t), C2(t), Q2(t), R2(t), B2(t)) = E0;

2. IfR0 > 1, there exists an ζ > 0 such that for any solution

(S1(t), I1(t), C1(t), Q1(t), R1(t), B1(t), S2(t), I2(t), C2(t), Q2(t), R2(t), B2(t))

with initial value x0 := (S0
1 , I

0
1 , C

0
1 , Q

0
1, R

0
1, B

0
1 , S

0
2 , I

0
2 , C

0
2 , Q

0
2, R

0
2, B

0
2) ∈ X and

I0
1 6= 0 or I0

2 6= 0 or C0
1 6= 0 or C0

2 6= 0 or B0
1 6= 0 or B0

2 6= 0, (15)

we have
lim inf
t→∞

Ii(t) ≥ ζ, lim inf
t→∞

Ci(t) ≥ ζ, lim inf
t→∞

Bi(t) ≥ ζ, i = 1, 2. (16)

Moreover, system (1) has at least one positive ω-periodic solution

(Ŝ1(t), Î1(t), Ĉ1(t), Q̂1(t), R̂1(t), B̂1(t), Ŝ2(t), Î2(t), Ĉ2(t), Q̂2(t), R̂2(t), B̂2(t)).

Proof Part (i). We first consider the case where R0 < 1 with ρ1 = ρ2 = 0. Thus, r(ΦF(·)−V(·)(ω)) < 1 (see Lemma 2.4).
Now we take ξ1 > 0 sufficiently small such that r(ΦFξ1 (·)−V(·)(ω)) < 1. Here

Fξ1(t) =



βC1
(t) η1βC1

(t) (S∗1 + ξ1)
βB1

(t)

KB1
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 βC2(t) η2βC2(t) (S∗2 + ξ1)
βB2

(t)

KB2

0 0 0 0 0 0
0 0 0 0 0 0


.

From the positivity of solutions and the assumption ρ1 = ρ2 = 0, it follows from the first and seventh equations of (1) that{
dS1

dt ≤ Λ1 − µ1S1 −mS
12S1 +mS

21S2,
dS2

dt ≤ Λ2 − µ2S2 +mS
12S1 −mS

21S2.
(17)

In view of (17), (3), Lemma 2.1, together with the comparison arguments that there is a t1 > 0 such that
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Si(t) ≤ S∗i + ξ1, ∀ t ≥ t1, i = 1, 2.

Then we have the following inequalities

dI1
dt ≤ βC1

(t)(I1 + η1C1) +
βB1

(t)(S∗
1+ξ1)

KB1
B1

−(µ1 + σ1 + δI1 + εI1)I1 − θ1I1 −mI
12I1 +mI

21I2, ∀ t ≥ t1,
dC1

dt = σ1I1 − (µ1 + δC1
+ εC1

)C1 −mC
12C1 +mC

21C2, ∀ t ≥ t1,
dB1

dt = g1B1 + αI1(t)I1 + αC1(t)C1 − µB1B1 −mB
12B1 +mB

21B2, ∀ t ≥ t1,
dI2
dt ≤ βC2

(t)(I2 + η2C2) +
βB2

(t)(S∗
2+ξ1)

KB2
B2

−(µ2 + σ2 + δI2 + εI2)I2 − θ2I2 +mI
12I1 −mI

21I2, ∀ t ≥ t1,
dC2

dt = σ2I2 − (µ2 + δC2
+ εC2

)C2 +mC
12C1 −mC

21C2, ∀ t ≥ t1,
dB2

dt = g2B2 + αI2(t)I2 + αC2(t)C2 − µB2B2 +mB
12B1 −mB

21B2, ∀ t ≥ t1.

(18)

By Lemma 3.1, we can find a positive, ω-periodic function v(t) and v̄(t) := d̄eλ1(t−t1)v(t) is a solution of

dx(t)

dt
= (Fξ1(t)− V(t))x(t),

where λ1 := 1
ω ln [r(ΦFξ1 (·)−V(·)(ω))] and d̄ > 0 is large enough such that

v̄(t1) = d̄v(t1) ≥ (I1(t1), C1(t1), B1(t1), I2(t1), C2(t1), B2(t1)).

Then (18) and the comparison argument (see, e.g., [20, Theorem B.1]) imply that

(I1(t), C1(t), B1(t), I2(t), C2(t), B2(t)) ≤ v̄(t), ∀ t ≥ t1.

With λ1 < 0, we see that v̄(t)→ 0 as t→∞. Therefore,

(I1(t), C1(t), B1(t), I2(t), C2(t), B2(t))→ 0 as t→∞.

Then Qi(t), i = 1, 2, in (1) is asymptotic to the following system

dQi
dt

= −(µi + γi + δQi)Qi.

Thus, limt→∞Qi(t) = 0, i = 1, 2. Here we used the theory
of asymptotically periodic semiflows (see, e.g., [24] and [25,
section 3.2]). Similarly, (R1(t), R2(t)) in (1) is asymptotic to
the following system{

dR1

dt = −(µ1 + ρ1)R1 −mR
12R1 +mR

21R2,
dR2

dt = −(µ2 + ρ2)R2 +mR
12R1 −mR

21R2,
(19)

and hence, limt→∞(R1(t), R2(t)) = (0, 0). Thus,
(S1(t), S2(t)) in system (1) is asymptotic to system (3). By
Lemma 2.1, we see that limt→∞(S1(t), S2(t)) = (S∗1 , S

∗
2 ).

This proves Part (i).
Part (ii). Assume that R0 > 1. In view of Lemma 2.2,

we see that the discrete-time system {Pn}n≥0 admits a

global attractor in X. Now we are ready to show that
{Pn}n≥0 is uniformly persistent with respect to (X0, ∂X0).
By Lemma 3.2, it follows that X0 is positively invariant under
the solution flow of (1). Clearly, X0 is open in X, X0 ∪ ∂X0 =
X, and X0 ∩ ∂X0 = ∅.

Let

M∂ = {x0 ∈ ∂X0 : Pn(x0) ∈ ∂X0, ∀ n ∈ N},

and$(x0) be the omega limit set of the orbit Γ+ = {Pn(x0) :
∀n ∈ N}. Recall that E0 represents the disease-free state of
system (1), which is given in (6). Then P (E0) = E0.

Inspired by the work [21], we set

M0 = {(S0
1 , I

0
1 , C

0
1 , Q

0
1, R

0
1, B

0
1 , S

0
2 , I

0
2 , C

0
2 , Q

0
2, R

0
2, B

0
2) ∈ X : I0

i = C0
i = B0

i = 0, i = 1, 2}.

Claim 1. M0 = M∂ .
For any x0 := (S0

1 , I
0
1 , C

0
1 , Q

0
1, R

0
1, B

0
1 , S

0
2 , I

0
2 , C

0
2 , Q

0
2, R

0
2, B

0
2) ∈

M0, we have I0
i = C0

i = B0
i = 0, ∀ i = 1, 2. This implies that

Ii(t, x
0) = Ci(t, x

0) = Bi(t, x
0) = 0, ∀ i = 1, 2, ∀ t ≥ 0.

Hence, Ii(nω, x0) = Ci(nω, x
0) = Bi(nω, x

0) = 0, ∀ i =
1, 2, ∀ n ∈ N. Thus, it is easy to see that x0 ∈ ∂X0 and
Pn(x0) ∈ ∂X0, ∀ n ∈ N. This means that x0 ∈ M∂ .
Therefore, M0 ⊆ M∂ . On the other hand, for any x0 :=
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(S0
1 , I

0
1 , C

0
1 , Q

0
1, R

0
1, B

0
1 , S

0
2 , I

0
2 , C

0
2 , Q

0
2, R

0
2, B

0
2) ∈ M∂ , we

must have

I0
i = C0

i = B0
i = 0, ∀ i = 1, 2. (20)

Otherwise,

(I0
1 , C

0
1 , B

0
1 , I

0
2 , C

0
2 , B

0
2) 6= (0, 0, 0, 0, 0, 0),

which together with Lemma 3.2 implies that

(I1(nω), C1(nω), B1(nω), I2(nω), C2(nω), B2(nω))T � (0, 0, 0, 0, 0, 0), ∀ n > 0.

The definition of M∂ contradicts the above inequality, and hence, (20) holds. Thus, x0 ∈ M0, and hence, M∂ ⊆ M0.
Therefore, Claim 1 is true.

Claim 2. E0 is globally stable in M∂ .
We first show that $(x0) = E0, ∀ x0 ∈M∂ . Given x0 ∈M∂ = M0, we see that Ii(t, x0) = Ci(t, x

0) = Bi(t, x
0) = 0, i =

1, 2, t ≥ 0. Then, for t ≥ 0, (S1(t), Q1(t), R1(t), S2(t), Q2(t), R2(t)) satisfies

dS1

dt = Λ1 − µ1S1 + ρ1R1 −mS
12S1 +mS

21S2,
dQ1

dt = −(µ1 + γ1 + δQ1)Q1,
dR1

dt = γ1Q1 − (µ1 + ρ1)R1 −mR
12R1 +mR

21R2,
dS2

dt = Λ2 − µ2S2 + ρ2R2 +mS
12S1 −mS

21S2,
dQ2

dt = −(µ2 + γ2 + δQ2
)Q2,

dR2

dt = γ2Q2 − (µ2 + ρ2)R2 +mR
12R1 −mR

21R2.

(21)

In view of system (21), we see that limt→∞Qi(t) = 0, i =
1, 2. Then (R1(t), R2(t)) in (1) is asymptotic to system
(19), and hence, limt→∞(R1(t), R2(t)) = (0, 0). Thus,
(S1(t), S2(t)) in system (1) is asymptotic to system (3). By
Lemma 2.1, it follows that limt→∞(S1(t), S2(t)) = (S∗1 , S

∗
2 ).

Thus, we have shown that $(x0) = E0. In view of above
claims and Lemma 3.3, we see that {E0} is an isolated
invariant set in X and W s(E0) ∩ X0 = ∅, where W s(E0) is
the stable set ofE0, and {E0} is acyclic inM∂ . In view of [25,
Theorem 1.3.1], we see that {Pn}n≥0 is uniformly persistent

with respect to (X0, ∂X0) in the sense that there exists ζ̃ > 0
such that

lim inf
n→∞

d(Pn(x0), ∂X0) ≥ ζ̃, ∀x0 ∈ X0,

where d is the norm-induced distance in R12. By [14, Theorem
3.7], we know that P has a global attractor A0 in X0. Since
A0 = PA0, we have that I0

i > 0, C0
i > 0, B0

i > 0, i = 1, 2,
for all

x0 := (S0
1 , I

0
1 , C

0
1 , Q

0
1, R

0
1, B

0
1 , S

0
2 , I

0
2 , C

0
2 , Q

0
2, R

0
2, B

0
2) ∈ A0.

Let B0 :=
⋃

t∈[0,ω]

Ψ(t)A0. Then B0 ⊂ X0 and lim
t→∞

d(Ψ(t)φ,B0) = 0, ∀x0 ∈ X0. Then there exists an ζ > 0 such that for

any solution
(S1(t), I1(t), C1(t), Q1(t), R1(t), B1(t), S2(t), I2(t), C2(t), Q2(t), R2(t), B2(t))

with initial value x0 ∈ X0 satisfies

lim inf
t→∞

Ii(t) ≥ ζ, lim inf
t→∞

Ci(t) ≥ ζ, lim inf
t→∞

Bi(t) ≥ ζ, i = 1, 2.

Furthermore, [25, Theorem 1.3.6] implies that P has a fixed point

x̂ = (Ŝ1(0), Î1(0), Ĉ1(0), Q̂1(0), R̂1(0), B̂1(0), Ŝ2(0), Î2(0), Ĉ2(0), Q̂2(0), R̂2(0), B̂2(0))

in X0, and hence, Îi(0) > 0, Ĉi(0) > 0, B̂i(0) > 0, i = 1, 2.
Clearly, u(t, x̂) = (Ŝ1, Î1, Ĉ1, Q̂1, R̂1, B̂1, Ŝ2, Î2, Ĉ2, Q̂2, R̂2, B̂2)(t) is an ω-periodic solution of (1). We can further show

that
(Ŝ1(t), Î1(t), Ĉ1(t), Q̂1(t), R̂1(t), B̂1(t), Ŝ2(t), Î2(t), Ĉ2(t), Q̂2(t), R̂2(t), B̂2(t))� 0,

due to the similar arguments to those in Lemma 3.2.
The rest of the mathematical arguments were motivated by the work [21]. For any

x0 := (S0
1 , I

0
1 , C

0
1 , Q

0
1, R

0
1, B

0
1 , S

0
2 , I

0
2 , C

0
2 , Q

0
2, R

0
2, B

0
2) ∈ X with the property in (15), it is easy to see that x0 6∈ M0. We claim

that there exists an integer n0 = n0(x0) ≥ 0 such that Pn0(x0) ∈ X0. Otherwise, Pn(x0) ∈ ∂X0, for all n ≥ 0, which implies
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that x0 ∈M∂ = M0, and it is a contradiction. Since

Ψ(t)x0 = Ψ(t− n0ω)(Ψ(n0ω)x0) = Ψ(t− n0ω)(Pn0(x0)),

we see that (16) is also valid. The proof of Part (ii) is finished.

4. Numerical Simulations
This section is devoted to the numerical investigation of

seasonal and spatial influences on the dynamics of system

(1). Except the migration rates, the parameters used in our
numerical simulations were given in Table 1. In order to study
the spatial influence on system (1), we first put mw

21 = mw
12 =

0, w = S, I, C,R,B, into system (1), and we obtain the
following model in a single patch i:



dSi
dt = Λi −

βCi (t)(Ii+ηiCi)Si
Si+Ii+Ci+Qi+Ri

− βBi (t)BiSi
Bi+KBi

− µiSi + ρiRi,

dIi
dt =

βCi (t)(Ii+ηiCi)Si
Si+Ii+Ci+Qi+Ri

+
βBi (t)BiSi
Bi+KBi

− (µi + σi + δIi + εIi)Ii − θiIi,
dCi
dt = σiIi − (µi + δCi + εCi)Ci,
dQi
dt = θiIi − (µi + γi + δQi)Qi,
dRi
dt = γiQi + εIiIi + εCiCi − (µi + ρi)Ri,
dBi
dt = giBi + αIi(t)Ii + αCi(t)Ci − µBiBi,
Si(0) ≥ 0, Ii(0) ≥ 0, Ci(0) ≥ 0, Qi(0) ≥ 0, Ri(0) ≥ 0, Bi(0) ≥ 0,

(22)

where either i = 1 or i = 2. Next, we define the basic
reproduction number,R(i)

0 , for system (22). Let

F(i)(t) =

 βCi(t) ηiβCi(t) S∗i
βBi (t)

KBi
0 0 0
0 0 0

 ,

and

V(i)(t) =

 V
(i)
11 0 0

−σi V
(i)
22 0

−αIi(t) −αCi(t) V
(i)
33

 ,

where V(i)
11 = µi +σi + δIi + εIi + θi, V

(i)
22 = µi + δCi + εCi ,

and V
(i)
33 = µBi − gi. By the same ideas in Lemma 2.3 (see

also [22, Theorem 2.1]), we letW(i)(t, s, λ), t ≥ s, s ∈ R be
the evolution operator of the linear ω-periodic system on R3,

dw

dt
=

(
−V(i)(t) +

F(i)(t)

λ

)
w, t ∈ R,

with parameter λ ∈ (0,∞). Then λ = R(i)
0 is the unique

solution of
ρ(W(i)(ω, 0, λ)) = 1, (23)

where ρ(W(i)(ω, 0, λ)) is the spectral radius ofW(i)(ω, 0, λ).
Use the property (23) and the parameters in Table 1, we can
numerically observe that R(1)

0 < 1 and R(2)
0 < 1 whenever

0 ≤ d1, d2 ≤ 1 (see Figure 1 ). This reveals that the disease
cannot spread in a single patch with parameters in Table 1 and
0 ≤ d1, d2 ≤ 1.

Table 1. Parameter values (except migration rates) used in our numerical simulations,
where the values of d1 and d2 will be given.

Parameters Mean value References

βC1
(t) 0.3× [d1 × cos(2πt/365) + 1.01] Assumed

βC2
(t) 0.4× [d2 × cos(2πt/365) + 1.01] Assumed

η1, η2 1.2 [15]

βB1
(t) 3× 10−6 × [d1 × cos(2πt/365) + 1.01] Assumed

βB2
(t) 1× 10−6 × [d2 × cos(2πt/365) + 1.01] Assumed

KB1
, KB2

0.62 [16]

θ1, θ2 0.2827 [11]

δI1 , δI2 0.06 [15]

δC1
, δC2

0.004 [15]

δQ1
, δQ2

0.0033 [15]

σ1, σ2 0.04 [2]

εI1 , εI2 0.1 [15]

εC1
, εC2

0.001 [16]

αI1 (t) 10× [d1 × cos(2πt/365) + 1.01] Assumed

αI2 (t) 10× [d2 × cos(2πt/365) + 1.01] Assumed

αC1
(t) 5× [d1 × cos(2πt/365) + 1.01] Assumed

αC2
(t) 5× [d2 × cos(2πt/365) + 1.01] Assumed

µB1
, µB2

0.0345 [17]

γ1, γ2 0.002485 [11]

µ1 0.136 Assumed

µ2 0.281 Assumed

Λ1 µ1 × 0.7 Assumed

Λ2 µ2 × 1 Assumed

ρ1, ρ2 0.0013 [18]

g1, g2 0.014 [17]

Next, we numerically investigate the influence of migration
on the transmission of typhoid. We will show that typhoid
can become epidemic if we incorporate suitable migration
rates between patch 1 and patch 2 with parameters in Table
1 into system (1) whenever d1 and d2 are close to 1. That
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is, we observe that typhoid can become epidemic with suitable
migration rates between patch 1 and patch 2, although it cannot
be epidemic in each isolated single patch (without migration).
More precisely, the immigration rates are chosen as follows:

mS
12 = 1, mS

21 = 30,

mI
12 = 1, mI

21 = 20,

mC
12 = 1, mC

21 = 15, (24)
mR

12 = 1, mR
21 = 10,

mB
12 = 1, mB

21 = 50,

where the migration rates from patch 2 to patch 1 are much
bigger than those from patch 1 to patch 2. We first assume
the parameters in system (1) take those in Table 1 and (24),

then the basic reproduction number R0 of system (1) can be
numerically computed by the ideas in Lemma 2.3, and an
interesting phenomenon occurs that R0 > 1 when d1, d2 are
close to 1 (see Figure 2 ); nevertheless, R(i)

0 < 1, i = 1, 2
(see Figure 1 ). This indicates that migration between patches
does play a central role in the transmission of typhoid. Finally,
we also numerically show the extinction of the isolated single
patch system (22) with i = 1, 2, respectively, but persistence
of the two-patch system (1) occurs after the migration rates
are included. The parameters we used are in Table 1 and (24).
Putting d1 = 0.96 (resp. d2 = 0.95), and the extinction of
system (22) with i = 1 (resp. i = 2 ) is illustrated in Figure 3
(resp. Figure 4). After we put d1 = 0.96 and d2 = 0.95 and
the immigration rates are chosen in (24), persistence of system
(1) occurs (see Figure 5).

(a) (b)

Figure 1. The basic reproduction number,R(i)
0 , in each single patch. (a)R(1)

0 for patch 1 ( system (22) with i = 1) with respect to the parameter d1 ∈ [0, 1]; (b)R(2)
0 for patch 2

( system (22) with i = 2) with respect to the parameter d2 ∈ [0, 1]. All parameters we used are in Table 1 and we observe thatR(i)
0 < 1 when d1, d2 ∈ [0, 1], i = 1, 2.

Figure 2. R0 of system (1) with respect to the parameters d1, d2 ∈ [0, 1]. All parameters we used are in Table 1 and (24).
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Figure 3. Extinction occurs for the single patch system (22) with i = 1 and d1 = 0.96, where the used parameters are in Table 1 and only the dynamics of (I1(t), C1(t), B1(t))
are shown.

Figure 4. Extinction occurs for the single patch system (22) with i = 2 and d2 = 0.95, where the used parameters are in Table 1 and only the dynamics of (I2(t), C2(t), B2(t))
are shown.
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Figure 5. Persistence occurs for the two-patch system (1) with d1 = 0.96 and d2 = 0.95, where the used parameters are in Table 1 and (24), and only the dynamics of
(I1(t), C1(t), B1(t), I2(t), C2(t), B2(t)) are shown.

5. Conclusion

Typhoid can be a serious problem in several developing
countries, and the infection of typhoid is through both
direct (i.e. human-to-human) transmission and indirect
(i.e. environment-to-human) transmission, which is
associated with the ingestion of contaminated food or water.
Asymptomatically infected individuals are not experiencing
any symptoms but they can shed S. Typhi into the environment
for years, thereby sustaining transmission [15, 16]. A higher
incidence of typhoid fever [12, 13] is usually observed during
the rainy season since a large increase of flooding may occur
by the rainfall and the water resources is contaminated by
the excreta with pathogenic bacteria. It is also reported
that people living near water bodies may have a higher rate
of typhoid infection [4]. Thus, this study constructed and
analyzed a system that incorporates seasonal effects into
a two-patch model describing the transmission of Typhoid
fever in a seasonally and spatially variable environment,
in which the bacteria in the environment was included
and the population of human is divided into five classes,
namely, susceptible individuals, infected individuals, carrier
individuals, individuals under treatment and recovered
individuals.

The well-posedness of model (1) (see Lemma 2.2) is first
established, and the associated reproduction number, R0 is
also provided. Since the population Qi, i = 1, 2, in system

(1) is supposed to be on treatment and it cannot move in
the environment, leading to that those terms −mQ

12Q1 +

mQ
21Q2 and mQ

12Q1 − mQ
21Q2 must be ignored. This makes

mathematical analysis more difficult and we can prove the
extinction of Typhoid fever only when R0 < 1 and the
additional condition ρi = 0, i = 1, 2, is imposed, where
ρi represents the immunity waning rate in patch i (see
Theorem 3.1 (i)). When R0 > 1, the Typhoid fever can
persist in the environment if one of the initial values of infected
individuals ( I0

i ), carrier individuals (C0
i ) and bacteria (B0

i ) is
non-zero, for some patch i (see Theorem 3.1 (ii)).

The numerical results in Section 4 further indicate that
migration rates between patches may reverse the outcome of
the persistence of Typhoid fever. The used parameters of
system (1) takes the form in Table 1 with d1 = 0.96 and
d2 = 0.95. When migration rates are further chosen as those
in (24), it is observed that Typhoid fever persists ( see Figure
5), however, typhoid may become extinct when migration rates
are changed into zeros (see Figure 3 and Figure 4). Thus, our
simulation confirms that spatial effects do play an important
role in the transmission of Typhoid fever.

Finally, the influences of seasonal factors on the
transmission of typhoid are also performed numerically. For
this purpose, the used parameters of system (1) takes the form
in Table 1 with d1, d2 ∈ [0, 1], then the dependence of R0 on
d1, d2 ∈ [0, 1] is illustrated in Figure 2. The basic reproduction
number, [R0], of the time-averaged autonomous system
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corresponding to (1) is also calculated. For a continuous
periodic function g(t) with the period ω, we define its average
as [g] := 1

ω

∫ ω
0
g(t)dt. In view of Table 1, it is not hard to

see that ω = 365, [βC1
] = 0.3 × 1.01, [βC2

] = 0.4 × 1.01,
[βB1 ] = 3 × 10−6 × 1.01, [βB2 ] = 1 × 10−6 × 1.01,
[αI1 ] = 10 × 1.01, [αI2 ] = 10 × 1.01, [αC1 ] = 5 × 1.01,
and [αC2

] = 5 × 1.01. Assume that [F] and [V] take the
forms in (8) and (9), respectively, in which βCi(t), βBi(t),
αIi(t) and αCi(t) are replaced by [βCi ], [βBi ], [αIi ] and [αCi ],
respectively, i = 1, 2. Then [R0] equals the spectral radius
of [F][V]−1, that is, [R0] = ρ([F][V]−1) = 0.6612, which
is independent of the choices of d1, d2 ∈ [0, 1]. Comparing
[R0] = 0.6612 with R0 in Figure 2, it follows that one may
underestimate the infection risks if the seasonal effects are
ignored.
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