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Abstract: The weighted extended Cayley networks are an extension of extended Cayley networks, which are the structures
constructed by introducing power spaces into traditional Cayley trees. The weighted extended Cayley networks are constructed
depending on two structural parameters of the network m,n and a weight factor r. Firstly, we used a new calculation method to
calculate the exact analytic formula of the average weighted shortest path (AWSP). The obtained results show that: (1) For very
large systems, the AWSPs for different value of weight factor r are less affected by the parameter m. (2) The AWSPs are less
affected by the weight factor r when r is greater than 0 and less than or equal to n, while the AWSPs depend on the scaling factor
r when r is greater than n. We have presented a trapping issue of weight-dependent walks in the weighted extended Cayley
networks, focusing on a specific case with a perfect trap located at the central node. Then, the scaling expression of the average
trapping time (ATT) is derived based on the layering of weighted extended Cayley networks. It was surprisingly found that (1)
Regardless of the relationship between m and n, the dominant terms of ATTs are consistent. (2) ATTs are less affected by the
structural parameterm and the weight factor r when r is less than or equal to the ratio of n tom−1, indicating that the efficiency
of the trapping process is independent ofm and r. (3) When r is greater than the ratio of n tom−1, the efficiency of the trapping
process depends on three main parameters: two structural parameters of the networks m,n and a weight factor r, which means
that the smaller the multiplier of three numbers r, n and m − 1 is, the more efficient the trapping process is. Therefore, the
trapping efficiency of the weighted extended Cayley networks is not only affected by the underlying structures of the networks
m and n, but also by the weight factor r.
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1. Introduction
In recent years, complex network have attracted attentions

from various fields, including physics, chemistry, biology
and computer science [1]. A large number of scientists
in various fields are increasingly interested in transforming
molecular, fractal and other structures into complex network.

These structures include various lattices [2–7], Sierpinski
gasket [8–10], Sierpinski tower [11], Koch curve [12–15],
T-fractals and their extensions[16–21], pseudofractal scale-
free web [22–25], Apollonian packing [26–29], modular
graphs [30–32], as well as macromolecules (dendrimers[33–
35], hyperbranched polymers[36–40], etc). Dendrimers and
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regular hyperbranched polymers are two classic families of
macromolecules, which can be modeled by Cayley trees and
Vicsek fractals [41–44], respectively. The main reason is
that complex networks provide a good way to analyze their
topological characteristics and dynamic processes.

Weighted networks have attracted increasing attention in
various scientific fields[45, 46]. Weighted networks are
extension of networks or graphs, in which each edge between
nodes i and j is associated with a variable wij , called the
weight[47, 48]. Taking the ecological networks for example,
the intensity of predator-prey interactions can reflect the
importance of edges in ecosystems[49]. Therefore, weighted
networks not only reflect practical significance in real life,
but also have high theoretical significance. The heterogeneity
of weights affects dynamical processes taking place on the
weighted networks. Carletti et al first defined a special class of
weighted fractal networks[46]. Dai et al constructed weighted
scale-free networks, weighted modular networks, and studied
the impact of weights on the topological characteristics and
dynamical processes of their networks[47, 48, 50].

Among various dynamical processes, random walks are
related to other dynamics, which include transport in media
[51], disease spreading [52], target search [53], and so on.
There are three most general kinds of random walks: standard
random walk, weight-dependent walk and strength-dependent
walk [54]. For the classic random walk, a particle may
choose one of its neighboring edges at the same probability
in the unweighted networks. For the weight-dependent walk
or strength-dependent walk, the particle will choose an edge
according to its weight or the strength of the node connected by
it in the weighted networks. Compared with standard random
walks, weight-dependent walk not only affects the topological
structure of weighted networks, but also has a significant
impact on the dynamical processes in weighted networks. The
weight-dependent walk is useful for studying the topological
structure of weighted networks, such as the average weighted
shortest path. In particular, as an integral theme of random
walks, trapping is related to a wide variety of contexts [12],
such as photon-harvesting processes in photosynthetic cells
[55], lighting harvesting in antenna systems [33, 56, 57],
energy or exciton transport in polymer systems [58, 59], and
so on.

In the weighted networks, trapping process refers to the
absorption of all particles accessing a deep trap positioned
at a given location with the weight-dependent walk. A
basic quantity related to the trapping problem is the trapping
time (TT), commonly known as the mean first-passage time
(MFPT) for weight-dependent walk[44]. The MFPT is defined
as the expected time for a particle starting off from a source
point to arrive at the trap for the first time. Then, The
average trapping time (ATT), which is defined as the average
of trapping time over all starting nodes, is usually used as
an important indicator to measure the trapping efficiency.
Dai et al studied the trapping time for weight-dependent
walk in the weighted pseudofractal scale-free networks[60],
the weighted scale-free triangulation networks[61], and the
weighted tetrahedron Koch networks[62], respectively. In this

paper, we construct the weighted extended Cayley networks
depending on two structural parameters of the network m,n
and a weight factor r and study the influence of the parameters
m,n, r on the topological characteristics and dynamical
processes of the weighted extended Cayley networks.

The paper is organized as follows. In Section 2, we
construct a model of the weighted extended Cayley networks
depending on two structural parameters of the network m,n
and a weight factor r. In Section 3, the average weighted
shortest path (AWSP) is computed based on this division of
weighted extended Cayley networks. Then, in Section 4, we
calculate the the average trapping time (ATT) with weighted-
dependent walk in the weighted extended Cayley networks.
Finally, a conclusion is given in Section 5.

2. The Weighted Extended Cayley
Networks

The purpose of this section is to construct the weighted
extended Cayley networks. Intuited by Cayley trees[19, 43,
44], extended networks[37, 63] and weighted networks[46,
64], we can construct the weighted extended Cayley networks
in an iterative manner.

Let us fix a positive real numbers r > 1, a positive integer
m ≥ 3 and a positive integer 0 ≤ n ≤ m − 1. Denote
by Cg(m,n) the weighted extended Cayley networks after g
iterations. Then, the weighted extended Cayley networks are
built as follows.

1. At iteration g = 0, C0(m,n) consists of an isolated
node, called the central node.

2. At iteration g = 1, m new nodes are generated
connecting the central node to form C1(m,n). Let
C1(m,n) be our base graph, composed by m+ 1 nodes
and m edges with unit weight. The m + 1 nodes
in C1(m,n) are labeled by 0, 1, 2, · · · ,m. C1(m,n)
has m segments (chains), which are expressed as
C1,0

1 (m,n), C2,0
1 (m,n), · · · , Cm,01 (m,n), respectively.

Each segment has two nodes 0, j(j = 1, 2, · · · ,m) and
a edge with unit weight.

3. At iteration g = 2,C2(m,n) is obtained fromC1(m,n):
Let C(k)

1 (m,n)(k = 1, 2, 3) be made up of m − 1
segments ofC1(m,n), whose weighted edges have been
scaled by the weight factor r. The central node 0′

of C(k)
1 (m,n)(k = 1, 2, 3) is recorded as the labeled

node j(j = 1, 2, · · · ,m). The labeled node j(j =

1, 2, · · · ,m) of C(k)
1 (m,n)(k = 1, 2, 3) is linked to the

central node 0 with n2−2 = n0 = 1 edge of unit weight.
Remark: C

(k)
1 (m,n)(k = 1, 2, 3) = C1,0

1 (m,n) ∪
C2,0

1 (m,n) ∪ · · · ∪ Cm−1,01 (m,n) = C2,0
1 (m,n) ∪

C3,0
1 (m,n) ∪ · · · ∪ Cm,01 (m,n) = C3,0

1 (m,n) ∪
C4,0

1 (m,n) ∪ · · · ∪ Cm,01 (m,n) ∪ C1,0
1 (m,n).

4. At iteration i(1 < i < g), Ci(m,n) is obtained from
Ci−1(m,n): Let C(k)

i−1(m,n)(k = 1, 2, 3) be made up
of m − 1 segments of Ci−1(m,n), whose weighted
edges have been scaled by the weight factor r. The
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central node 0′ of C(k)
i−1(m,n)(k = 1, 2, 3) is recorded

as the labeled node j(j = 1, 2, · · · ,m). The labeled
node j(j = 1, 2, · · · ,m) of C(k)

i−1(m,n)(k = 1, 2, 3)
is linked to the central node 0 with ni−2 edges of unit
weight.
Remark: C

(k)
i−1(m,n)(k = 1, 2, 3) = C1,0

i−1(m,n) ∪
C2,0
i−1(m,n) ∪ · · · ∪ Cm−1,0i−1 (m,n) = C2,0

i−1(m,n) ∪
C3,0
i−1(m,n) ∪ · · · ∪ Cm,0i−1 (m,n) = C3,0

i−1(m,n) ∪
C4,0
i−1(m,n)∪ · · ·∪Cm,0i−1 (m,n)∪C1,0

i−1(m,n). Figure 1
illustrates the division of the weighted extended Cayley
networks Cg(4, 2) at the iteration g = 3 when m = 4
and n = 2. Figure 2 illustrates the construction process
of the weighted extended Cayley networks Cg(4, 2)
from g = 1 to g = 3.

5. At the last iteration g, Cg(m,n)is obtained from
Cg−1(m,n) (see Figure 3): Let C(k)

g−1(m,n)(k =
1, 2, 3) be made up of m − 1 segments of Cg−1(m,n),
whose weighted edges have been scaled by the weight
factor r. The central node 0′ ofC(k)

g−1(m,n)(k = 1, 2, 3)
is recorded as the labeled node j(j = 1, 2, · · · ,m). The
labeled node j(j = 1, 2, · · · ,m) of C(k)

g−1(m,n)(k =

1, 2, 3) is linked to the central node 0 with ng−2 edges
of unit weight. Thus, the weighted extended Cayley
networks is set up.

Figure 1. Cg(4, 2) is regarded as merging
C1,0

g (4, 2), C2,0
g (4, 2), C3,0

g (4, 2), C4,0
g (4, 2) for g = 3. The pink dot

represents the center node, while the green dots represent the labeled nodes.

This paper stipulates that: 0i−2 = i − 1, so this special
network is consistent with the extended dendrimers[63] when
m = 3, n = 0 and r = 1. To calculate some intermediate
parameters, we introduce this special extended dendrimers.

When n = 1 and r = 1, the network is the Cayley trees[43].
Based on the construction of the weighted extended Cayley

network Cg(m,n), all nodes at the iteration g can be divided
into Mg + 1 levels, where Mg is defined as the minimum
number of edges from an arbitrary peripheral node to the
center. Then, it is easy to verify that

Mg =

g−2∑
j=0

nj =


g , if n = 1,

ng−1 + n− 2

n− 1
, if n > 1.

(1)

More specifically, the central node 0 is located at level 0 and
the peripheral nodes are located at level Mg .

Figure 2. Iterative construction method for the weighted extended Cayley networks
Cg(4, 2) from g = 1 to g = 3. The pink dot represents the center node, while the
green dots represent the labeled nodes.

Gi(g) is defined as the iteration at which all nodes at level i
are created. Then

Gi(g) =


0 , if i = 0,

j|j ∈ (Mg −Mg+1−j ,Mg −Mg−j ], if 0 < i < Mg,

g , if i = Mg.

(2)
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Figure 3. Structure of an weighted extended Cayley network C4(4, 2) when m = 4 and n = 2. The pink dot represents the center node, while the green dots represent the labeled
nodes.

Li(g) represents the value of levels i at which the degree of nodes changes, and Li(g) is defined to be

Li(g) =

{
Mg −Mg−i, if 0 ≤ i < g,

Mg , if i = g.
(3)

Let Ni(g) denote the number of nodes at level i. According to the construction approach, it is easy to derive that Ni(g) is

Ni(g) =

{
1 , if i = 0,

m× (m− 1)Gi(g)−1, if 1 ≤ i ≤Mg.
(4)

Let Ng denote the total number of nodes at the generation g. By construction, the derivation formula for Ng is

Ng = m

g−2∑
i=0

(m− 1)i · ng−2−i +m(m− 1)g−1 + 1. (5)

Then Eq. (5) can be solved to yield

Ng =


(n+ 1)(g + n− 1)ng−2 + 1 , if n = m− 1,

m× (m− n)(m− 1)g−1 − ng−1

m− 1− n
+ 1, if n 6= m− 1,

(6)
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and the total number of edges in Cg is Eg = Ng − 1.

3. Average Weighted Shortest Path of
the Weighted Extended Cayley
Networks

The aim of this section is to determine average weighted
shortest path of the weighted extended Cayley networks.
Average weighted shortest path (AWSP) is defined as the
average of the weighted shortest path between two nodes
over all node pairs[46, 65–67]. The AWSP of the weighted
extended Cayley networks Cg(m,n) is given by

dg =
Dtot(g)

Ng(Ng − 1)/2
, (7)

where

Dtot(g) =
∑

i,j∈Cg(m,n)

dij(g). (8)

Let dij(g) represent the weighted shortest path linking
nodes i and j in Cg(m,n).

In order to calculate the accurate numerical value
of Dtot(g + 1), we will split the weighted extended
Cayley network Cg+1(m,n) into m + 1 groups, which

are C
(0)
g (m,n), C

(1)
g (m,n), · · · , C(m)

g (m,n). Each group
C

(j)
g (m,n)(j = 1, 2, · · · ,m) is m− 1 segments of Cg(m,n),

whose weighted edges have been scaled by a weight factor
r. The labeled node j(j = 1, 2, · · · ,m) of C(j)

g (m,n)(j =
1, 2, · · · ,m) is linked to the central node 0 with ng−1 edges of
unit weight. The group C(0)

g (m,n) have m · ng−1 + 1 nodes,
including m labeled nodes of C(j)

g (m,n)(j = 1, 2, · · · ,m).
Figure 4 shows the division of the weighted extended Cayley
network C3(4, 2) when m = 4 and n = 2.

Figure 4. The division method of the weighted network C3(4, 2) is to divide it into 5
branches, namely C(0)

2 (4, 2), C(1)
2 (4, 2), C(2)

2 (4, 2), C(3)
2 (4, 2) and C(4)

2 (4, 2).

Through this division of Cg+1(m,n), Dtot(g + 1) satisfies
the iterative formula as follows:

Dtot(g + 1) =
∑

i,j∈C(1)
g (m,n)

dij +
∑

i,j∈C(2)
g (m,n)

dij + · · ·+
∑

i,j∈C(m)
g (m,n)

dij +
∑

i,j∈C(0)
g (m,n)

dij + Ωg,

= m
∑

i,j∈C(1)
g (m,n)

dij +
∑

i,j∈C(0)
g (m,n)

dij + Ωg. (9)

where Ωg is the sum over all weighted shortest paths whose nodes are not in the same copy of C(j)
g (m,n)(j = 0, 1, 2, · · · ,m).

Note that the weighted paths that contribute to Ωg must all go through the central node 0. Thus, the problem of determining
Dtot(g + 1) is reduced to calculating

∑
i,j∈C(0)

g (m,n)
dij , Ωg and

∑
i,j∈C(1)

g (m,n)
dij , (see Appendix).

For n = m− 1, Eq. (9) can be obtained as

Dtot(g + 1) = (n+ 1)
∑
i,j∈Bg

dij + [(ng + n2 + 1)ng−1 + 1] · nr · [(n+ 1)(nr)g−1 +
n+ 1

n4

×
g−2∑
i=0

(g − i)(n2)g−i(nr)i +
(n+ 1)(2n− 3)

2n4
×
g−2∑
i=0

(n2)g−i(nr)i +
n+ 1

2n2

g−2∑
i=0

ng−i(nr)i]

+ (n+ 1)(g + n− 1)2n3g−2 + (n+ 1)(g + n− 1)× (3n+ 1)n3(g−1) + (n+ 1)n2(g−1)

2

+
(n+ 1)(3n+ 1)n3(g−1)

6
+

(n+ 1)2n2(g−1)

2
+

(n+ 1)ng−1

3
. (10)

Inserting Eq. (10) into Eq. (7), dg can be obtained as

dg ∼


ng, if r < n,

g · ng, if r = n,

rg

g
, if r > n,

(11)
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(a) log4 dg vs. g. (b) log4
dg
g vs. g.

(c) logr(dg · g) vs. g.

Figure 5. The average weighted shortest path for different value of weight factor r whenm = 5 and n = 4.

For n 6= m− 1, Eq. (9) can be obtained as

Dtot(g + 1) = m
∑
i,j∈Bg

dij + [m · ng−1 + 1 +
(m− n)(m− 1)g+1 − (m− 1)2 · ng−1

m− 1− n
]× (mr − r)[m(mr − r)g−1

+
m(m− 1)(m− n)

m− 1− n
×
g−2∑
i=0

(mn− n)g−2−i(mr − r)i − m(m+ n− 1)

2(m− 1− n)
×
g−2∑
i=0

(n2)g−2−i(mr − r)i

+
m

2

g−2∑
i=0

ng−2−i × (mr − r)i] +
(m− 1)3 · ng−1

(m− 1− n)2
[(m− n)(m− 1)g−1 − ng−1]2

+ m(m− 1) · 1

2
[(3m− 2)n2(g−1) +m · ng−1] · (m− n)(m− 1)g−1 − ng−1

m− 1− n

+
(3m2 − 2m)n3g−3

6
+
m2 · n2g−2

2
+
m · ng−1

3
. (12)

Inserting Eq. (12) into Eq. (7), dg can be obtained as

dg ∼


ng, if r < n,

g · ng, if r = n,

rg, if r > n,

(13)
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(a) log4 dg vs. g. (b) log4
dg
g vs. g.

(c) logr(dg) vs. g.

Figure 6. The average weighted shortest path for different value of weight factor r whenm = 5 and n = 2.

For very large systems, the average weighted shortest paths
(AWSPs) for different value of weight factor r are less affected
by the parameter m. When 0 < r ≤ n, the dominant
terms of the AWSPs are consistent according to Eqs. (11) and
(13), regardless of the relationship between m and n . when
0 < r < n, the AWSP grows with the g power of n in Figures
5(a) and 6(a). When r = n, dgg scales with the g power of n in
Figures 5(b) and 6(b). Therefore, the AWSPs are less affected
by the weight factor r when 0 < r ≤ n. When n = m − 1,
dg · g for r > n grows as a power-law function of the weight
factor r with the exponent, represented by the network iteration
g (see Figure 5(c)). When n 6= m − 1, the AWSP for r > n
grows as a power-law function of the weight factor r with the
exponent g (see Figure 6(c)). Thus, the weighted extended
Cayley networks cannot show the characteristics of the small-
world systems.

4. Average Trapping Time of the
Weighted Extended Cayley Networks

The main focus of this section is to study the trapping
problem of weight-dependent walks with a single trap located
on the central node in the weighted extended Cayley networks
Cg . The purpose of our research on trapping problems is to
explore the impact of network structural characteristics and
weights on trapping efficiency.

The trapping problem of weight-dependent walks in the
weighted networks requires introducing some basic concepts,
including the weight, the strength of the node and the transition
probability from the node to its neighbor node. The weight is
defined as a variable wij assigned to the edges between nodes
i and j in the weighted network [68, 69]. The variable wij
between nodes i and j is assigned by the nth power of r, which
is called the weight factor. The strength of the node is the sum
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of edge weights of all edges connected to the node[70]. For
weight-dependent walk, a walker chooses one of its nearest
neighbors with probability proportional to the weight of edge
linking them[54, 71]. The transition probability from node i to
its neighbor j is

Pwi→j =
wij
si

=
wij∑

j∈ν(i) wij
, (14)

where si is the strength of node i and ν(i) is the set of neighbor
nodes of node i.

Next, we will introduce a parameter indicator (the average
trapping time) to evaluate and describe many important
dynamic processes of the weighted network, such as trapping
efficiency. The trapping time (TT) is known as the mean
first-passage time (MFPT), which is the expected time for
a walker starting off from a source point to first reach the
trap[72, 73]. Let Tij be the TT from the node i to the trap node
j. The average trapping time (ATT) is defined as the average
of trapping time over all starting nodes. 〈T 〉g is represented
as the ATT to the trap positioned on the central node in the
weighted extended Cayley networks Cg . By definition, 〈T 〉g
is given by

〈T 〉g =
1

Ng − 1

Ng∑
i=1

Tij(g) =
Ttot(g)

Ng − 1
, (15)

where Ttot(g) represents the sum of the TTs for all nodes to the trap located on the central node.
Let Fi(g) denote the TT for a node at level i in Cg . Based on the layering of Cg , Fi(g) is given by

Fi(g) =



0, if i = 0,

1

(m− 1)r + 1
[Fi−1(g) + 1] +

(m− 1)r

(m− 1)r + 1
[Fi+1(g) + 1], if 0 < i < Mg and i = LGi(g)(g),

1

2
[Fi−1(g) + 1] +

1

2
[Fi+1(g) + 1], if 0 < i < Mg and i 6= LGi(g)(g),

FMg−1(g) + 1. if i = Mg.

(16)

Eq. (16) can be elaborated as follows:
1. When i = 0, F0(g) = 0.
2. When i 6= LGi(g)(g), the strength of one node at level
i is rGi+1 + rGi . With probability rGi

rGi+1+rGi
= 1

2 , the
walker takes one time step from a node at level i to a
neighbor node at level i − 1, and then makes Fi−1(g)
jumps to reach the trap for the first time; with probability

rGi+1

rGi+1+rGi
= 1

2 , the walker takes one time step from a
node at level i to a neighbor node at level i+ 1 and then
takes Fi+1(g) steps to visit the trap for the first time.

3. When i = LGi(g)(g), the strength of one node at
level i is rGi−1 + (m − 1)rGi . With probability

rGi−1

rGi−1+(m−1)rGi
= 1

(m−1)r+1 , the particle, starting
from a node at level i, walks one time step to arrive at
a neighbor node at level i − 1, and then jumps Fi−1(g)
to more steps to reach the trap for the first time; with
probability (m−1)rGi

rGi−1+(m−1)rGi
= (m−1)r

(m−1)r+1 , the particle
walks one time step from a node at level i to a neighbor
node at level i + 1 and then takes Fi+1(g) steps to visit
the trap for the first time.

4. When i = Mg , the walker only need to take time step
from the outermost node to the second outermost node.

Thus, for 0 < i < Mg , we have

Fi(g)− Fi−1(g) = (m− 1)r[Fi+1(g)− Fi(g)] + [1 + (m− 1)r], i = LGi(g)(g), (17)

and

Fi(g)− Fi−1(g) = [Fi+1(g)− Fi(g)] + 2, i 6= LGi(g)(g). (18)

Let Ai(g) = Fi(g)− Fi−1(g), then

Ai(g) =

{
(m− 1)rAi+1(g) + [1 + (m− 1)r], if i = LGi(g)(g),

Ai+1(g) + 2. if i 6= LGi(g)(g),
(19)

holds for all 0 < i < Mg . Using the initial condition AMg (g) = FMg (g)− FMg−1(g) = 1, Eq. (19) can be solved to yield
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Ai(g) = (mr − r)g−Gi(g) + [1 + (m− 1)r][(mr − r)0 + (mr − r)1 + (mr − r)2 + · · ·+ (mr − r)g−1−Gi(g)]

+ 2[ng−1 − ng−1−Gi(g) − i] + 2(mr − r){[(mr − r)0 · ng−2−Gi(g) + (mr − r)1 · ng−3−Gi(g)

+ · · ·+ (mr − r)g−3−Gi(g) · n1]− [(mr − r)0 + (mr − r)1 + · · ·+ (mr − r)g−3−Gi(g))]}

= (mr − r)g−Gi(g) + [1 + (m− 1)r]

g−1−Gi(g)∑
j=0

(mr − r)i + 2[ng−1 − ng−1−Gi(g) − i]

+ 2(mr − r)[
g−3−Gi(g)∑

j=0

(mr − r)i · ng−2−Gi(g)−i −
g−3−Gi(g)∑

j=0

(mr − r)i].

If r 6= n
m−1 and r 6= 1

n(m−1) , then we have

Ai(g) = 2[1 +
1

mr − r − 1
+

n

(mr − r − n)(mr − r)
− 1

(mr − r − 1)(mr − r)
](mr − r)g−Gi(g)

+ 2 · ng−1 − 4(mr − r)− 2n

mr − r − n
ng−1−Gi(g) − 2i+ 1.

If r = n
m−1 , then we have

Ai(g) = 2(g − 1−Gi(g))ng−1−Gi(g) + 2(n− 1)ng−1−Gi(g) + 2 · ng−1 − 2i+ 1.

If r = 1
m−1 , then we have

Ai(g) = 2 · ng−1 − 2(n− 2)

n− 1
ng−1−Gi(g) − 2i+

3n− 5

n− 1
.

Using the obtained intermediate quantity Ai(g), Fi(g) (0 ≤ i ≤Mg) can be calculated by

Fi(g) = F0(g) +

i∑
j=1

[Fj(g)− Fj−1(g)]

= F0(g) +

i∑
j=1

Aj(g). (20)

When r 6= n
m−1 , r 6= 1

m−1 and r 6= 1
n(m−1) , then

Fi(g) =
k1

n[n(mr − r)− 1]
[n(mr − r)]g + k1 · i(mr − r)g−Gi(g) − k1

n(n− 1)
ng(mr − r)g−Gi(g)

+
k1(mr − r − 1)

(n− 1)[n(mr − r)− 1]
[n(mr − r)]g−Gi(g) + 2i · ng−1 − k2

n2 − 1
n2(g−1) − k2 · i · ng−1−Gi(g)

+
k2

n− 1
n2g−2−Gi(g) − k2

n(n2 − 1)
n2(g−Gi(g)) − i2, (21)

where k1 = 2[1 + 1
mr−r−1 + n

(mr−r−n)(mr−r) −
1

(mr−r−1)(mr−r) ] and k2 = 4(mr−r)−2n
mr−r−n .

When r = n
m−1 , then
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Fi(g) =
2[(n2 − 1)g + (n3 − 3n2 − n+ 2)]

(n2 − 1)2
n2(g−1) + 2i(g + n− 2−Gi(g))ng−1−Gi(g)

+
2[(n2 − 1)g − (n2 − 1)Gi(g) + (n3 − 2n2 + 2)]

n(n2 − 1)2
n2(g−Gi(g)) − 2(g + n− 2−Gi(g))

n− 1
n2g−2−Gi(g)

+ 2i · ng−1 − i2. (22)

When r = 1
m−1 , then

Fi(g) = −2(n− 2)[
n2(g−1)

(n+ 1)(n− 1)2
+
i · ng−1−Gi(g)

n− 1
+

n2(g−Gi(g))

n(n+ 1)(n− 1)2

− n2g−2−Gi(g)

(n− 1)2
] + 2i · ng−1 − i2 +

2(n− 2)

n− 1
. (23)

When r = 1
n(m−1) , then

Fi(g) =
2(n2 − n− 1)

n2 − 1
[
Gi(g)

n
+

1

n(n− 1)
+ i · n−g+Gi(g) − nGi(g)

n(n− 1)
]

− 2(n2 − 2)

n2 − 1
[

n2g

n2(n2 − 1)
+
n2(g−Gi(g))

n(n2 − 1)
+
i · ng−Gi(g)

n
− n2g−Gi(g)

n2(n− 1)
] + 2i · ng−1 − i2. (24)

〈T 〉g is the ATT to the trap located on the central node in Cg . According to Eqs. (15) and (21-24), 〈T 〉g can be solved to obtain
as follows:

〈T 〉g =

∑Mg

i=1Ni(g)Fi(g)

Ng − 1

= { k1[n(mr − r)]g

n[n(mr − r)− 1]

m

m− 1
[

g−1∑
i=1

(m− 1)i · ng−1−i + (m− 1)g] +
k1m(mr − r)g

m− 1

×
Mg∑
i=1

i · r−Gi(g) − k1m[nr(m− 1)]g

n(n− 1)(m− 1)
[

g−1∑
i=1

r−i · ng−1−i + r−g]

+
k1m(mr − r − 1)[n(mr − r)]g

(m− 1)(n− 1)[n(mr − r)− 1]
[

g−1∑
i=1

(nr)−i · ng−1−i + (nr)−g] +
2m · ng−1

m− 1

×
Mg∑
i=1

i · (m− 1)Gi(g) − k2m · n2(g−1)

(m− 1)(n2 − 1)
[

g−1∑
i=1

(m− 1)i · ng−1−i + (m− 1)g]

− k2m · ng−1

m− 1

Mg∑
i=1

i · (m− 1

n
)Gi(g) +

k2m · n2(g−1)

(m− 1)(n− 1)
[

g−1∑
i=1

(
m− 1

n
)i · ng−1−i

+ (
m− 1

n
)g]− k2m · n2g−1

(m− 1)(n2 − 1)
[

g−1∑
i=1

(
m− 1

n2
)i · ng−1−i + (

m− 1

n2
)g]

− m

m− 1

Mg∑
i=1

i2 · (m− 1)Gi(g)}/(Ng − 1), (25)

for r 6= n
m−1 , r 6= 1

m−1 and r 6= 1
n(m−1) .
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〈T 〉g =

∑Mg

i=1Ni(g)Fi(g)

Ng − 1

= {2m[(n2 − 1)g + (n3 − 3n2 − n+ 2)]n2(g−1)

(m− 1)(n2 − 1)2
[

g−1∑
i=1

(m− 1)i · ng−1−i + (m− 1)g]

+
2m(g + n− 2)ng−1

m− 1

Mg∑
i=1

i · (m− 1

n
)Gi(g) − 2m · ng−1

m− 1

Mg∑
i=1

i ·Gi(g)(
m− 1

n
)Gi(g)

+
2m[(n2 − 1)g + (n3 − 2n2 + 2)]n2g−1

(m− 1)(n2 − 1)2
[

g−1∑
i=1

(
m− 1

n2
)i · ng−1−i + (

m− 1

n2
)g]− 2m · n2g−1

(m− 1)(n2 − 1)

×
Mg∑
i=1

Gi(g) · (m− 1

n2
)Gi(g) − 2m(g + n− 2)n2(g−1)

(m− 1)(n− 1)
[

g−1∑
i=1

(
m− 1

n
)i · ng−1−i + (

m− 1

n
)g]

+
2m · n2(g−1)

(m− 1)(n− 1)

Mg∑
i=1

Gi(g) · (m− 1

n
)Gi(g) +

2m · ng−1

m− 1

Mg∑
i=1

i · (m− 1)Gi(g)

− m

m− 1

Mg∑
i=1

i2 · (m− 1)Gi(g)}/(Ng − 1), (26)

for r = n
m−1 .

〈T 〉g =

∑Mg

i=1Ni(g)Fi(g)

Ng − 1

= { −2m(n− 2)n2(g−1)

(m− 1)(n+ 1)(n− 1)2
[

g−1∑
i=1

(m− 1)i · ng−1−i + (m− 1)g]− 2m(n− 2)ng−1

(m− 1)(n− 1)

×
Mg∑
i=1

i · (m− 1

n
)Gi(g) − 2m(n− 2)n2g−1

(m− 1)(n+ 1)(n− 1)2
[

g−1∑
i=1

(
m− 1

n2
)i · ng−1−i + (

m− 1

n2
)g]

+
2m(n− 2)n2(g−1)

(m− 1)(n− 1)2
[

g−1∑
i=1

(
m− 1

n
)i · ng−1−i + (

m− 1

n
)g] +

2m · ng−1

m− 1

Mg∑
i=1

i · (m− 1)Gi(g)

− m

m− 1

Mg∑
i=1

i2 · (m− 1)Gi(g) +
2m(n− 2)

(m− 1)(n− 1)
[

g−1∑
i=1

(m− 1)i · ng−1−i + (m− 1)g]}/(Ng − 1), (27)

for r = 1
m−1 .

〈T 〉g =

∑Mg

i=1Ni(g)Fi(g)

Ng − 1

= {2(n2 − n− 1)

n2 − 1
〈 m

n(m− 1)
[

g−1∑
i=1

i · (m− 1)i · ng−1−i + g · (m− 1)g] +
m

n(n− 1)(m− 1)

× [

g−1∑
i=1

(m− 1)i · ng−1−i + (m− 1)g] +
mn−g

m− 1

Mg∑
i=1

i · (mn− n)Gi(g) − m

n(n− 1)(m− 1)

× [ng−1
g−1∑
i=1

(m− 1)i + (mn− n)g]〉 − 2(n2 − 2)

n2 − 1
〈 m · n2g

n2(n2 − 1)(m− 1)
[

g−1∑
i=1

(m− 1)i · ng−1−i
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+ (m− 1)g] +
m · n2g

n(n2 − 1)(m− 1)
[

g−1∑
i=1

(
m− 1

n2
)i · ng−1−i + (

m− 1

n2
)g] +

m · ng

n(m− 1)

Mg∑
i=1

i · (m− 1

n
)Gi(g)

+
m · n2g

n2(n− 1)(m− 1)
[

g−1∑
i=1

(
m− 1

n
)i · ng−1−i + (

m− 1

n
)g]〉+

2m · ng−1

m− 1

Mg∑
i=1

i · (m− 1)Gi(g)

− m

m− 1

Mg∑
i=1

i2 · (m− 1)Gi(g)}/(Ng − 1), (28)

for r = 1
n(m−1) .

When g →∞, 〈T 〉g has the following dominant term:

〈T 〉g =


(n2)g, if r <

n

m− 1
,

g · (n2)g, if r =
n

m− 1
,

[nr(m− 1)]g. if r >
n

m− 1
.

(29)

In order to better analyze and understand the average trapping time (ATT), we have calculated the specific analytical
expressions for ATTs under two scenarios:(1) m=5, n=2, and (2) m=5, n=4.

(1) When m = 5 and n = 2, we have

Ai(g) =


4r − 1

2r − 1
[(4r)g−Gi(g) − 2g−Gi(g)] + 2g − 2i+ 1, if r 6= 1

2
,

g + 1

2
2g−Gi(g) − Gi(g)

2
2g−Gi(g) + 2g − 2i+ 1, if r =

1

2
.

(30)

Then, Fi(g) can be obtained as

Fi(g) =



4r − 1

2r − 1
[

(8r)g

2(8r − 1)
+

4r − 1

8r − 1
(8r)g−Gi(g) + i · (4r)g−Gi(g) − 2g−1(4r)g−Gi(g) − 4g

6

−4g−Gi(g)

3
− i · 2g−Gi(g) + 22g−1−Gi(g)] + i · 2g − i2, if r 6= 1

2
, r 6= 1

8
3g − 1

36
4g +

3g + 5

18
4g−Gi(g) +

g + 1

2
i · 2g−Gi(g) − g + 1

4
22g−Gi(g) − Gi(g)

6
4g−Gi(g)

− i
2
Gi(g)2g−Gi(g) +

Gi(g)

4
22g−Gi(g) + i · 2g − i2, if r =

1

2
,

Gi(g) + 1

3
+

2i

3
2−g+Gi(g) − 2Gi(g)

3
− 4g

9
− 2 · 4g−Gi(g)

9
− 2i

3
2g−Gi(g)

+
22g−Gi(g)

3
+ i · 2g − i2, if r =

1

8
.

(31)

At last, 〈T 〉g can be obtained as

〈T 〉g = { 5(4r − 1)

8(2r − 1)(8r − 1)
[
3

2
· (32r)g − (16r)g] +

5(4r − 1)

4(2r − 1)(8r − 1)
[
1

2
· (16r)g + (2r − 1)4g]

+ [
5(r − 1)(4r − 1)

8(2r − 1)2
8g +

5r(r − 1)

4(2r − 1)2
4g +

5(4r − 1)

16(2r − 1)2
(8r)g +

5(2r + 1)

32(2r − 1)2
(16r)g]

− 5(4r − 1)

16(2r − 1)2
[2(r − 1)8g + (16r)g]− 5(4r − 1)

48(2r − 1)
[3 · 16g − 2 · 8g]− 5(4r − 1)

24(2r − 1)
8g
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− 5(4r − 1)

32(2r − 1)
[(2g − 1)8g − 2(g + 2)4g] +

5(4r − 1)

16(2r − 1)
(g + 1)8g + [

15

16
· 16g − 5(3g − 1)

32
· 8g

− 5

8
· 4g]− 5

4
[
3

8
· 16g − 9g − 16

24
· 8g − 3g + 5

8
· 4g − 1

6
· 2g]}/(15

2
· 4g−1 − 5

2
· 2g−1),

〈T 〉g = { 5(4r − 1)

8(2r − 1)(8r − 1)
[
3

2
· (32r)g − (16r)g] +

5(4r − 1)

4(2r − 1)(8r − 1)
[
1

2
· (16r)g + (2r − 1)4g]

+ [
5(r − 1)(4r − 1)

8(2r − 1)2
8g +

5r(r − 1)

4(2r − 1)2
4g +

5(4r − 1)

16(2r − 1)2
(8r)g +

5(2r + 1)

32(2r − 1)2
(16r)g]

− 5(4r − 1)

16(2r − 1)2
[2(r − 1)8g + (16r)g]− 5(4r − 1)

48(2r − 1)
[3 · 16g − 2 · 8g]− 5(4r − 1)

24(2r − 1)
8g

− 5(4r − 1)

32(2r − 1)
[(2g − 1)8g − 2(g + 2)4g] +

5(4r − 1)

16(2r − 1)
(g + 1)8g + [

15

16
· 16g − 5(3g − 1)

32
· 8g

− 5

8
· 4g]− 5

4
[
3

8
· 16g − 9g − 16

24
· 8g − 3g + 5

8
· 4g − 1

6
· 2g]}/(15

2
· 4g−1 − 5

2
· 2g−1),

for r 6= 1
2 and r 6= 1

8 .

〈T 〉g = {5(3g − 1)

144
[
3

2
· 16g − 8g] +

5(3g + 5)

144
· 8g +

5(g + 1)

64
[(2g − 1)8g + 2(g + 2)4g]

− 5(g + 1)2

32
· 8g − 5

24
(8g − 4g)− 5

64
[(g2 + 3g − 6)8g + (g2 + 5g + 6)4g] +

5(g2 + 3g)

64
· 8g

+ [
15

16
· 16g − 5(3g − 1)

32
· 8g − 5

8
· 4g]− 5

4
[
3

8
· 16g − 9g − 16

24
· 8g − 3g + 5

8
· 4g

− 1

6
· 2g]}/(15

2
· 4g−1 − 5

2
· 2g−1),

for r = 1
2 .

〈T 〉g = {5(3g + 1)4g

24
+

5

144
(14 · 8g − 7 · 4g + 10 · 2g − 8)− 5

72
(7 · 8g − 2g+2)

− 5

36
(
3

2
· 16g − 8g)− 5

36
· 8g − 5

48
[(2g − 1)8g + 2(g + 2)4g] +

5(g + 1)8g

24

+ [
15

16
· 16g − 5(3g − 1)

32
· 8g − 5

8
· 4g]− 5

4
[
3

8
· 16g − 9g − 16

24
· 8g − 3g + 5

8
· 4g

− 1

6
· 2g]}/(15

2
· 4g−1 − 5

2
· 2g−1), (32)

for r = 1
8 .

(2) When m = 5 and n = 4, we have

Ai(g) =


4r − 3

2(r − 1)
(4r)g−Gi(g) − 2r − 1

2(r − 1)
4g−Gi(g) +

1

2
· 4g − 2i+ 1, if r 6= 1,

g + 2

2
4g−Gi(g) − Gi(g)

2
4g−Gi(g) +

1

2
· 4g − 2i+ 1, if r = 1.

(33)

Then, Fi(g) can be obtained as
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Fi(g) =



4r − 3

2(r − 1)
[

(16r)g

4(16r − 1)
+

4r − 1

3(16r − 1)
(16r)g−Gi(g) + i · (4r)g−Gi(g) − 4g

12
· (4r)g−Gi(g)]

− 2r − 1

2(r − 1)
[
16g

60
+

16g−Gi(g)

15
+ i · 4g−Gi(g) − 42g−Gi(g)

12
] +

i

2
· 4g − i2, if r 6= 1, r 6= 1

16

15g + 14

8 · 152
16g +

15g + 34

2 · 152
16g−Gi(g) +

g + 2

2
i · 4g−Gi(g) − g + 2

24
42g−Gi(g) − Gi(g)

30
16g−Gi(g)

− i
2
Gi(g)4g−Gi(g) +

Gi(g)

24
42g−Gi(g) +

i

2
· 4g − i2, if r = 1,

22

15
[
Gi(g)

4
+

1

12
+ i · 4−g+Gi(g) − 4Gi(g)

12
]− 7

15
[
16g

60
+

16g−Gi(g)

15
+ i · 4g−Gi(g)

−42g−Gi(g)

12
] +

i

2
· 4g − i2, if r =

1

16
.

(34)
At last, 〈T 〉g can be obtained as

〈T 〉g = { 5(4r − 3)

128(r − 1)(16r − 1)
(g + 3)(64r)g +

5(4r − 1)(4r − 3)

24(r − 1)(16r − 1)2
[
1

4
· (64r)g + (12r − 1)4g]

+
5(4r − 3)

8(r − 1)
[

9(4r + 1)

32(4r − 1)(16r − 1)
(64r)g +

3

8(4r − 1)
(16r)g +

r − 1

4(4r − 1)
· 16g +

6r(r − 1)

(4r − 1)(16r − 1)
· 4g]

− 5(4r − 3)

96(r − 1)(4r − 1)
[
1

4
· (64r)g + (3r − 1) · 16g]− (2r − 1)(g + 3)

6 · 43(r − 1)
64g − 2r − 1

24 · 60(r − 1)
[64g + 44 · 4g]

− 5(2r − 1)

256(r − 1)
[64g + 4 · 16g] +

5(2r − 1)

6 · 43(r − 1)
64g + [

15(2g − 1)64g

256
+

5(3g − 2)16g

64
]− 1

256
[3(5g − 11)64g

+ 10(6g − 1)16g + 8(5g + 6)4g]}/(5(g + 3)4g−2)

for r 6= 1, r 6= 1
4 and r 6= 1

16 .
At last, 〈T 〉g can be obtained as

〈T 〉g =
(15g + 14)(g + 3)64g

90 · 43
+

15g + 34

24 · 152
[64g + 44 · 4g] +

5(g + 2)

256
[64g + 4 · 4g]

− 5(g + 2)

6 · 43
64g − 1

24 ∗ 152
[4 · 64g + (165g − 4)4g]− 1

96
[3 · 64g + 5 · 16g − 8 · 4g]

+
5

27 · 32
[64g + (6g − 1)16g] + [

15(2g − 1)64g

256
+

5(3g − 2)16g

64
]− 1

256
[3(5g − 11)64g

+ 10(6g − 1)16g + 8(5g + 6)4g]}/(5(g + 3)4g−2)

for r = 1.

〈T 〉g = {− (g + 3)64g

9 · 64
− 1

15 · 122
[64g + 44 · 4g]− 5

6 · 43
[64g + 4 · 16g] +

5 · 64g

4 · 122

+ [
5(2g − 1)

32
16g +

5(3g + 2)

24
4g] + [

15(2g − 1)64g

256
+

5(3g − 2)16g

64
]− 1

256
[3(5g − 11)64g

+ 10(6g − 1)16g + 8(5g + 6)4g]}/(5(g + 3)4g−2)

for r = 1
4 .
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〈T 〉g = {11(g2 + 7g)4g

8 · 24
+

11(g + 3)4g

12 · 24
+

55

192
[2 · 16g − 11(5g − 11)4g − 176]− 11

6 · 122
[13 · 16g − 4g+1]

− 7(g + 3)64g

45 · 64
− 7

48 · 152
[64g + 44 · 4g]− 7

12 · 32
[64g + 4 · 16g] +

7 · 64g

9 · 64
+ [

15(2g − 1)64g

256

+
5(3g − 2)16g

64
]− 1

256
[3(5g − 11)64g + 10(6g − 1)16g + 8(5g + 6)4g]}/(5(g + 3)4g−2) (35)

for r = 1
16 .

(a) log22 〈T 〉g vs. g. (b) log22
〈T〉g

g vs. g.

(c) log4·2·r〈T 〉g vs. g. (d) log4·2〈T 〉g vs. g.

Figure 7. Average trapping time 〈T 〉g or
〈T〉g

g versus g on a semilogarithmic scale whenm = 5 and n = 2.

For the range of g ≤ 100, the average trapping time 〈T 〉g or
〈T 〉g
g versus g on a semilogarithmic scale is shown in Figures

7 and 8. Regardless of the relationship between m and n, the
dominant terms of ATTs are consistent according to Eq. (29).

1. When r < n
m−1 , the main term of ATT is the g power

of n2 according to Eq. (29). 〈T 〉g versus g on a
semilogarithmic scale is basically a straight line, and the

slope of the fitted straight line is expressed as k ≈ 1 in
Figures 7(a) and 8(a), which is consistent with Eq. (29).

2. When r = n
m−1 , the dominant term of 〈T 〉gg is the g

power of n2 based on Eq. (29). 〈T 〉g
g versus g on a

semilogarithmic scale is basically a straight line, and the
slope of the fitted line is approximately 1 in Figures 7(b)
and 8(b), which is consistent with Eq. (29). Therefore,
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ATTs are less affected by the structural parameterm and
the weight factor r when r ≤ n

m−1 , indicating that the
efficiency of the trapping process is independent of m
and r in Figures 7(a), 7(b), 8(a) and 8(b).

3. When r > n
m−1 , the main term of 〈T 〉g is the g power

of nr(m − 1) based on Eq. (29), Figures 7(c) and
8(c). m and n are two key parameters for constructing
the internal structure of the networks. Figures 7(d)
and 8(d) indicate that ATTs grow sublinearly with the
network order, which also means that the efficiency of

the trapping process depends on the parameters m, n,
and r. When m and n are kept fixed, the smaller the
value of r is, the more efficient the trapping process
is. When r is kept fixed, the smaller the value of
m or n is, the more efficient the trapping process
is. Therefore, the trapping efficiency of the weighted
extended Cayley networks is not only affected by the
underlying structures of the networks m and n, but also
by the weight factor r.

(a) log42 〈T 〉g vs. g. (b) log42
〈T〉g

g vs. g.

(c) log42·r〈T 〉g vs. g. (d) log42 〈T 〉g vs. g.

Figure 8. Average trapping time 〈T 〉g or
〈T〉g

g versus g on a semilogarithmic scale whenm = 5 and n = 4.

5. Conclusions

In this paper, the weighted extended Cayley networks
are constructed depending on two structural parameters
of the network m,n and a weight factor r. We have
used a new calculation method to calculate the exact

analytic formula of the average weighted shortest path
(AWSP). Firstly, the weighted extended Cayley network
Cg+1(m,n) should be split into m + 1 groups, including
C

(0)
g (m,n), C

(1)
g (m,n), · · · , C(m)

g (m,n). Then, the sum of
all the AWSPs with nodes which are not in the same branch of
Cg+1(m,n) in Appendix is obtained. The expressions of the
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AWSPs with nodes belonging to C(0)
g (m,n) and C(1)

g (m,n)
have also been deduced in Appendix. The expressions for
AWSPs show that: (1) For 0 < r < n, it grows with the g
power of n. (2) For r = n, its dominant term is g × ng . (3)
For r > n, AWSP ×g grows as a power-law function of the
weight factor r with the exponent, represented by the network
iteration g when n = m − 1; AWSP grows as a power-law
function of the weight factor r with an exponent of g when
n 6= m − 1. For very large systems, the AWSPs for different
value of weight factor r are less affected by the parameter m.
Thus, the AWSPs are less affected by the weight factor r when
0 < r ≤ n, while the AWSPs depend on the weight factor r
when r > n.

To explore the effect of the underlying structures and the
weight factor on the trapping efficiency, we have studied the
trapping problem for weighted-dependent walks taking place
on a weighted extended Cayley network, concentrating on a
particular case with the single trap fixed at the central node.
Then, the exact analytic formula of the average trapping time
(ATT) is derived based on the layering of weighted extended
Cayley network. It was surprisingly found that (1) The main

term of ATT is the g power of n2 when r < n
m−1 . (2) The

dominant term of 〈T 〉gg is the g power of n2. (3) The main
term of 〈T 〉g is the g power of nr(m − 1) when r > n

m−1 .
Regardless of the relationship between m and n, the dominant
terms of ATTs are consistent. ATTs are less affected by the
structural parameter m and the weight factor r when r ≤
n

m−1 , indicating that the efficiency of the trapping process is
independent of m and r. When r > n

m−1 , the efficiency of
the trapping process depends on three main parameters: two
structural parameters of the network m,n and a weight factor
r, which means that the smaller the value of nr(m− 1) is, the
more efficient the trapping process is. Therefore, the trapping
efficiency of the weighted extended Cayley networks is not
only affected by the underlying structures of the networks m
and n, but also by the weight factor r.
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Appendix

Appendix I. Calculation Process of
∑∑∑

i,j∈C(0)
g (m,n) dij

Making Sg(m,n) =
∑
i,j∈C(0)

g (m,n)
dij , we have

Sg(m, 1) = Sg−1(m, 1) +
3m2 − 2m

2
g2 − m2 − 2m

2
g. (36)

Using the initial condition S1(m, 1) = m2, Eq. (36) can be solved to yield

Sg(m, 0) = S1(m, 0) +
3m2 − 2m

2
(12 + 22 + · · ·+ g2)− m2 − 2m

2
(1 + 2 + · · ·+ g)− 3m2 − 2m

2
+
m2 − 2m

2
,

=
3m2 − 2m

2
(12 + 22 + · · ·+ g2)− m2 − 2m

2
(1 + 2 + · · ·+ g),

=
g(g + 1)[(3m2 − 2m)g + 2m]

6
. (37)

By replacing g with ng−1 in Eq. (37), we can obtain

Sg(m,n) =
(3m2 − 2m)n3g−3 + 3m2 · n2g−2 + 2m · ng−1

6
(38)

Appendix II. Calculation Process of Ωg

Let Ωijg denote the sum of all shortest paths with nodes in Ω
(i)
g and Ω

(j)
g (i, j = 0, 1, 2, · · · ,m). Using the structure of

Cg(m,n), the analytical expression for Ωg can be rewritten as

Ωg = Ω10
g + Ω20

g + · · ·+ Ωm0
g + Ω12

g + Ω13
g + · · ·+ Ω1m

g ,

+ Ω23
g + Ω24

g + · · ·+ Ω2m
g + · · ·+ Ω(m−2)(m−1)

g + Ω(m−2)m
g + Ω(m−1)m

g

= mΩ10
g +

m(m− 1)

2
Ω12
g . (39)
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Due to the symmetry of network structure, Ω10
g = Ω20

g = · · · = Ω30
g , Ω12

g = Ω13
g = · · · = Ω1m

g = Ω23
g = Ω24

g = · · · = Ω2m
g =

· · · = Ω
(m−2)(m−1)
g = Ω

(m−2)m
g = Ω

(m−1)m
g .

In order to calculate Ω10
g and Ω12

g , we introduce the intermediate quantity Λg , where Λg represents the sum of di0(g) starting
off from the node i(i ∈ Cg(m,n), i 6= 0) to the central node 0. By definition, we have

Λg =
∑

i∈Cg(m,n),i6=0

di0.

Considering the self-similar network structure, Λg can evolve recursively as

Λg =
m− 1

m
rΛg−1 ×m+ [(Ng−1 − 1)× m− 1

m
× ng−2]×m+ [ng−2 + (ng−2 − 1) + · · ·+ 2 + 1)]×m

= (m− 1)rΛg−1 + (m− 1)(Ng−1 − 1)ng−2 +m · n
2g−4 + ng−2

2
.

Then, we have

Λg =


nrΛg−1 + (n+ 1)g · n2g−4 +

(n+ 1)(2n− 3)

2
n2g−4 +

n+ 1

2
ng−2 , if n = m− 1,

(m− 1)rΛg−1 +
m(m− 1)(m− n)

m− 1− n
(mn− n)g−2 − m(m+ n− 1)

2(m− 1− n)
n2(g−2) +

m

2
ng−2, if n 6= m− 1,

(40)

To reduce computational complexity, we chose the maximum and minimum values of n. The maximum and minimum values
of n are m − 1 and 2, respectively. When m = 3, n = 0 and r = 1, this special network is consistent with the extended
dendrimers[63]. When n = 1 and r = 1, the network is the Cayley trees[43]. So the minimum value of n is chosen as 2. When
n = m− 1, Λg is inductively to obtain as follows:

Λg = (nr)g−1Λ1 +
n+ 1

n4

g−2∑
i=0

(g − i)(n2)g−i(nr)i +
(n+ 1)(2n− 3)

2n4

g−2∑
i=0

(n2)g−i(nr)i,+
n+ 1

2n2

g−2∑
i=0

ng−i(nr)i,

= (n+ 1)(nr)g−1 +
n+ 1

n4

g−2∑
i=0

(g − i)(n2)g−i(nr)i +
(n+ 1)(2n− 3)

2n4

g−2∑
i=0

(n2)g−i(nr)i,+
n+ 1

2n2

g−2∑
i=0

ng−i(nr)i,

where the initial conditions Λ1 =
∑n+1
i=1 di0 = n+ 1.

When n 6= m− 1, Λg is inductively to obtain as follows:

Λg = (mr − r)g−1Λ1 +
m(m− 1)(m− n)

m− 1− n

g−2∑
i=0

(mn− n)g−2−i(mr − r)i − m(m+ n− 1)

2(m− 1− n)

×
g−2∑
i=0

(n2)g−2−i(mr − r)i +
m

2

g−2∑
i=0

ng−2−i(mr − r)i,

= m(mr − r)g−1 +
m(m− 1)(m− n)

m− 1− n

g−2∑
i=0

(mn− n)g−2−i(mr − r)i − m(m+ n− 1)

2(m− 1− n)

×
g−2∑
i=0

(n2)g−2−i(mr − r)i +
m

2

g−2∑
i=0

ng−2−i(mr − r)i,

where the initial conditions Λ1 =
∑m
i=1 di0 = m.

Using the calculated results of Λg , we have



132 Dandan Ye et al.: Trapping Issues for Weight-dependent Walks in the Weighted Extended Cayley Networks

Ω10
g =

∑
i∈C(1)

g (m,n)

j∈C(0)
g (m,n)

dij

=
∑

i∈C(1)
g (m,n)

j∈C(0)
g (m,n)

(di1 + d1j)

= (m · ng−1 + 1)
∑

i∈C(1)
g (m,n)

di1 +
(m− 1)(Ng − 1)

m

∑
j∈C(0)

g (m,n)

dj1

= (m · ng−1 + 1)
(m− 1)rΛg

m
+

(m− 1)(Ng − 1)

m

∑
j∈C(0)

g (m,n)

dj1, (41)

Ω12
g =

∑
i∈C(1)

g (m,n)

j∈C(2)
g (m,n)

dij

=
∑

i∈C(1)
g (m,n)

j∈C(2)
g (m,n)

(di1 + d12 + dj2)

=
(m− 1)(Ng − 1)

m

∑
i∈C(1)

g (m,n)

di1 +
(m− 1)2(Ng − 1)2

m2
2 · ng−1 +

(m− 1)(Ng − 1)

m

∑
j∈C(2)

g (m,n)

dj2

=
2(m− 1)(Ng − 1)

m

(m− 1)rΛg
m

+
(m− 1)2(Ng − 1)2

m2
2 · ng−1, (42)

where d12 = 2 · ng−1 have been used. In order to Ω10
g , we need to deduce the result of

∑
j∈C(0)

g (m,n)
dj1. Then, we have

∑
j∈C(0)

g (m,0)

dj1 = g
∑

j∈C(0)
1 (m,0)

dj1 + [1 + (2g − 1)× (m− 1)] + [2 + (2g − 2)× (m− 1)] + · · ·

+ [(g − 1) + (2g − (g − 1))× (m− 1)]

= (2m− 1)g +
g(g − 1)

2
+ (m− 1)(g − 1) · 2g − (m− 1) · g(g − 1)

2

=
g[(3m− 2)g +m]

2
, (43)

where
∑
j∈C(0)

1 (m,0)
dj1 = 2m− 1.

By replacing g with ng−1 in Eq. (43), we can obtain

∑
j∈C(0)

g (m,n)

dj1 =
(3m− 2)n2g−2 +m · ng−1

2
. (44)

Substituting Eqs. (41), (42) and (44) into Eq. (39), we have

Ωg = [m · ng−1 + 1 +
(m− 1)2(Ng − 1)

m
] · (mr − r)Λg +

(m− 1)3(Ng − 1)2

m
ng−1

+ (m− 1)(Ng − 1)
(3m− 2)n2g−2 +m · ng−1

2
.
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Appendix III. Calculation Process of
∑∑∑

i,j∈C(1)
g (m,n) dij

In order to calculating
∑
i,j∈C(1)

g (m,n)
dij , we first divide the network structure C(1)

g (m,n) into m branches, including

B
(0)
g , B

(1)
g , · · · , B(m−1)

g (see figure 9). B
(1)
g , B

(2)
g , · · · , B(m−1)

g are the copies of Bg−1, whose weighted edges have been
scaled by the weight factor r. The white nodes do not belong to Bg or D(1)

g (m,n); the green nodes belong to B(0)
g ; and the red

nodes belong to B(1)
g +B

(2)
g + · · ·+B

(m−1)
g .

Figure 9. The structure of C(1)
g (m,n) is split intom branches, includingB(0)

g , B(1)
g , · · · , B(m−1)

g .

Based on the network division of Bg ,
∑
i,j∈Bg

dij can be rewritten as∑
i,j∈Bg

dij =
∑

i,j∈B(0)
g

dij +
∑

i,j∈B(1)
g

dij +
∑

i,j∈B(2)
g

dij + · · ·+
∑

i,j∈B(m−1)
g

dij +
∑

i∈B(0)
g ,j∈B(1)

g

dij

+ · · ·+
∑

i∈B(0)
g ,j∈B(m−1)

g

dij +
∑

i∈B(1)
g ,j∈B(2)

g

dij + · · ·+
∑

i∈B(1)
g ,j∈B(m−1)

g

dij +
∑

i∈B(2)
g ,j∈B(3)

g

dij ,

+ · · ·+
∑

i∈B(2)
g ,j∈B(m−1)

g

dij + · · ·+
∑

i∈B(m−2)
g ,j∈B(m−1)

g

dij ,

=
∑

i,j∈B(0)
g

dij + (m− 1)
∑

i,j∈B(1)
g

dij + (m− 1)
∑

i∈B(0)
g ,j∈B(1)

g

dij +
(m− 1)(m− 2)

2

∑
i∈B(1)

g ,j∈B(2)
g

dij ,

where
∑
i,j∈C(1)

g (m,n)
dij =

∑
i,j∈Bg

dij .

Based on the structure of B(0)
g (m, 0), we can obtain the iterative formula as follows

∑
i,j∈B(0)

g (m,0)

dij −
∑

i,j∈B(0)
g−1(m,0)

dij = r
(m− 1)(g − 1)[(3m− 5)g − (4m− 6)]

2

=
(m− 1)(3m− 5)r

2
(g − 1)2 − (m− 1)2r

2
(g − 1).

Then, we can get
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∑
i,j∈B(0)

g (m,0)

dij =
(m− 1)(3m− 5)r

2
·
g−1∑
i=1

i2 − (m− 1)2r

2
·
g−1∑
i=1

i+
(m− 1)2r

2
− (m− 1)(3m− 5)r

2
+

∑
i,j∈B(0)

2 (m,0)

dij

=
(m− 1)(3m− 5)r

2

g−1∑
i=1

i2 − (m− 1)2r

2

g−1∑
i=1

i

=
(m− 1)gr(g − 1)[(3m− 5)g − (3m− 4)]

6
, (45)

where
∑
i,j∈B(0)

2 (m,0)
dij = 2C2

m−1 · r = (m− 1)(m− 2)r.

By replacing g − 1 with ng−2 in Eq. (45), we can obtain∑
i,j∈B(0)

g (m,n)

dij =
(m− 1)ng−2r(ng−2 + 1)[(3m− 5)ng−2 − 1]

6
. (46)

Let 4g =
∑
i∈B(0)

g ,j∈B(1)
g
dij denote the sum of all shortest paths with nodes in B(0)

g and B(1)
g . ∇g =

∑
i∈B(1)

g ,j∈B(2)
g
dij is

expressed as the sum of all shortest paths with nodes in B(1)
g and B(2)

g . Two intermediate quantities >g and ⊥g are introduced to
calculate4g and ∇g , where >g =

∑
i∈B(0)

g
dia and ⊥′g =

∑
i∈Bg

dib.

>g(m, 0) = (m− 2)r[g + (g + 1) + · · ·+ (2g − 2)] + r[1 + 2 + · · ·+ (g − 2)]

=
r(g − 1)[(3m− 5)g − 2(m− 1)]

2
. (47)

By replacing g − 1 with ng−2 in Eq. (47), we have

>g(m,n) =
r · ng−2[(3m− 5)ng−2 + (m− 3)]

2
.

The iteration formula of ⊥g is written as follows:

⊥
′

g =


nr⊥

′

g−1 +
(2g + 2n− 3)r

2
n2g−3 +

r

2
ng−1 , n = m− 1,

(mr − r)⊥
′

g−1 + (mr − r)[ (m− n)(m− 1)

m− n− 1
(mn− n)g−2 − m+ n− 1

2(m− n− 1)
n2g−4 +

1

2
ng−2], n 6= m− 1.

When n = m− 1, ⊥′g is inductively to obtain as follows:

⊥
′

g = (nr)g−1⊥
′

1 +
r

n

g−2∑
i=0

(g − 1− i)n2(g−1−i)(nr)i +
(2n− 1)r

2n

g−2∑
i=0

n2(g−1−i)(nr)i +
ng−1r

2

g−2∑
i=0

ri,

where ⊥′1 = nr.
When n 6= m− 1, ⊥′g is inductively to obtain as follows:

⊥
′

g = (mr − r)g−1⊥
′

1 +
r(m− n)

m− n− 1

g−2∑
i=0

(m− 1)g−ing−2−i(mr − r)i − r(m− 1)(m+ n− 1)

2(m− n− 1)

g−2∑
i=0

n2(g−2−i)

× (mr − r)i +
r(m− 1)

2

g−2∑
i=0

ng−2−i(mr − r)i,

where ⊥′1 = mr − r.
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Thus,

⊥g = ⊥
′

g−1 · r

= r · (nr)g−1 +
r2

n

g−3∑
i=0

(g − 2− i)n2(g−2−i)(nr)i +
r2(2n− 1)

2n

g−3∑
i=0

n2(g−2−i)(nr)i

+
r2 · ng−2

2

g−3∑
i=0

ri, if n = m− 1. (48)

⊥g = ⊥
′

g−1 · r

= r · (mr − r)g−1 +
r2(m− n)

m− n− 1

g−3∑
i=0

(m− 1)g−1−ing−3−i(mr − r)i − r2(m− 1)(m+ n− 1)

2(m− n− 1)

g−3∑
i=0

n2(g−3−i)

× (mr − r)i +
r2(m− 1)

2

g−3∑
i=0

ng−3−i(mr − r)i, if n 6= m− 1. (49)

After calculating >g and ⊥g , we can obtain

4g =

{
(g + n− 2)ng−2>g + ng−1⊥g, n = m− 1,

F>g + (m− 1)ng−2⊥g, n 6= m− 1.

∇g =

{
2(g + n− 2)ng−2⊥g + (g + n− 2)2n2(g−2) · 2ng−2r, n = m− 1,

2F⊥g + F 2 · 2ng−2r, n 6= m− 1,

where F = (m−n)(m−1)g−1−(m−1)ng−2

m−n−1 .
Using the initial conditions

∑
i,j∈D(1)

1
dij = C2

m−1 · 2r = (m− 1)(m− 2)r,
∑
i,j∈Bg

dij can be obtained as

∑
i,j∈Bg

dij = (m− 1)r
∑

i,j∈Bg−1

dij +
∑

i,j∈B(0)
g

dij + (m− 1)4g +
(m− 1)(m− 2)

2
∇g.

When n = m− 1,
∑
i,j∈Bg

dij is inductively to obtain as follows:

∑
i,j∈Bg

dij = nr
∑

i,j∈Bg−1

dij +
ng−1r(ng−2 + 1)[(3n− 2)ng−2 − 1]

6

+ (g + n− 2)ng−1>g + ng⊥g +
n(n− 1)

2
[2(g + n− 2)ng−2⊥g + (g + n− 2)2n2(g−2) · 2ng−2r]

= nr
∑

i,j∈Bg−1

dij +
r(3n− 2)

6n2
n3(g−1) +

r(n− 1)

2n
n2(g−1) − r

6
ng−1 +

r(3n− 2)

2n2
(g − 1)n3(g−1)

+
r(3n− 2)(n− 1)

2n2
n3(g−1) +

r(n− 2)

2n
(g − 1)n2(g−1) +

r(n− 2)(n− 1)

2n
n2(g−1)

+
r(n− 1)

n2
(g − 1)2n3(g−1) +

2r(n− 1)2

n2
(g − 1)n3(g−1) +

r(n− 1)3

n2
n3(g−1) + [(n− 1)(g − 2) + n2]

× [r · (nr)g−1 +
r2

n

g−3∑
i=0

(g − 2− i)n2(g−2−i)(nr)i +
r2(2n− 1)

2n

g−3∑
i=0

n2(g−2−i)(nr)i +
r2 · ng−2

2

g−3∑
i=0

ri].

∑
i,j∈Bg

dij '


g2n3g, 0 < r < n2,

g3 · n3g, r ≥ n2,
g2 · (nr)g, r ≥ n2,

(50)
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where
∑
i,j∈B1

dij = nr.
When n 6= m− 1,

∑
i,j∈Bg

dij is inductively to obtain as follows:∑
i,j∈Bg

dij = (m− 1)r
∑

i,j∈Bg−1

dij +
(m− 1)r[(3m− 5)n3(g−2) + (3m− 6)n2(g−2) − ng−2]

6

+ (m− 1)F>g + [(m− 1)2ng−2 + (m− 1)(m− 2)F ]⊥g + (m− 1)(m− 2)F 2 · ng−2r

= (m− 1)r
∑

i,j∈Bg−1

dij +
r(m− 1)(3m− 5)

6
n3(g−2) +

r(m− 1)(m− 2)

2
n2(g−2) − r(m− 1)

6
ng−2

+
r(m− n)(m− 1)(3m− 5)

2n2(m− n− 1)
[n2(m− 1)]g−1 +

r(m− n)(m− 1)(m− 3)

2n(m− n− 1)
[n(m− 1)]g−1

− r(m− 1)2(3m− 5)

2(m− n− 1)
n3(g−2) − r(m− 1)2(m− 3)

2(m− n− 1)
n2(g−2)

+
r(m− n)2(m− 1)3(m− 2)

(m− n− 1)2
[n(m− 1)2]g−2 − 2r(m− n)(m− 1)3(m− 2)

(m− n− 1)2
[n2(m− 1)]g−2

+
r(m− 1)3(m− 2)

(m− n− 1)2
n3(g−2) + [

(m− n)(m− 2)

m− n− 1
(m− 1)g − (n− 1)(m− 1)2

m− n− 1
ng−2]

× [r · (mr − r)g−1 +
r2(m− n)

m− n− 1

g−3∑
i=0

(m− 1)g−1−ing−3−i(mr − r)i − r2(m− 1)(m+ n− 1)

2(m− n− 1)

×
g−3∑
i=0

n2(g−3−i)(mr − r)i +
r2(m− 1)

2

g−3∑
i=0

ng−3−i(mr − r)i],

where
∑
i,j∈Bg

dij =
∑
i,j∈D(1)

g
dij .

∑
i,j∈Bg

dij '


(m− 1)2gng, 0 < r < n,

g · [(m− 1)2 · n]g, r = n,

[(m− 1)2 · r]g, r > n,

(51)

where
∑
i,j∈B1

dij = (m− 1)r.
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