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Abstract: This paper examine numerical study for soret and dufour effects on unsteady Newtonian MHD fluid flow with mass
and heat transfer in a collapsible elastic tube using Spectral Collocation technique. The objective of the study is to determine
the velocity, temperature and concentration profiles together with heat and mass transfer rates. The governing equations are
continuity, momentum, energy and concentration equation. The system of nonlinear partial differential equations governing
the flow solved numerically by applying collocation method and implemented in MATLAB. The numerical solution of the
profiles displayed both by graphically and numerically for different values of the physical parameters. The effects of varying
various parameters such as Reynolds number, Hartmann number, Soret number, Dufour number and Prandtl number on velocity,
temperature and concentration profiles also the rates of heat and mass transfer are discussed. The findings of this study are
important due to its wide range of application including but not limited to medical fields, biological sciences and other physical
sciences where collapsible tubes are applied.
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1. Introduction
Fluid flow through a collapsible elastic tubes has been

studied by a number of researchers due to its wide and
varied applications in different areas in real life. Collapsible
tubes are tubes with circular cross-section which are able
to accommodate elastically deformation when exposed to
internal-external pressure variations. This tubes are very
important in our daily life due to it involves in different
areas such as in biological studies, veins, arteries, urethra
and airways tubes are examples of collapsible elastic tube.
This study of MHD fluid flow through collapsible tube
with mass and heat transfer is of utmost importance due
to its application in physical and natural sciences and
engineering. The experimental and theoretical research on
unsteady incompressible MHD flows is important to scientific
and engineering fields in particular biological flows such as
blood flow in arteries or veins, flow of urine in urethra
and air flow in the bronchial airways. Also can be used

to study and prediction of many diseases such as the lung
disease (asthma and emphysema), or cardiovascular diseases
(heart stroke). It is also has importance in engineering
processes such as in MHD pumps, MHD power generators
for electricity production, accelerators, MHD flow meters,
electrostatic filters, the design of cooling systems with liquid
metals, and in geothermal power stations.

In the human body, capillary tubes such as blood vessels,
urethra, bronchioles, and ureters play important roles in the
transport of fluids. Blood is essential in sustaining life as
it transport oxygen and nutrients to all parts of the body,
relays chemical signals and moves metabolic wastes to the
kidney for elimination. Similarly in the industries collapse
may be experienced during cementing operations, trapped
fluid expansion or well evaculation. A quantitative models
of fluid flows are important, to date numerous mathematical
models have been developed describing MHD fluid flow
in different areas but few have done in collapsible tube.
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Makinde investigated mathematical model which describing
fluid dynamics in a collapsible tube, he constructed analytical
solution for problem using pertubation technique and Hermite-
Pade approximations [1]. Luo analyzes the unsteady behavior
and linear stability of the flow in a Collapsible tube by
using a fluid beam model [2]. Lakshmi Narayana established
Soret and Dufour effects on free convection heat and mass
transfer from horizontal flat plate in a Darcy porous medium
[3]. Odejide examined an incompressible viscous fluid
flow and heat transfer in a collapsible tube [4]. Cheng
analyze Soret and Dufour effects on natural convection
heat and mass transfer from a vertical cone in a porous
medium [5]. Emilie investigated an accurate modeling of
unsteady flows in collapsible tubes. One-dimensional Runge-
Kutta discontinuous Galerkin method coupled with lumped
parameter models for the boundary conditions was used [6].
El-Kabeir studied soret and dufour effects on heat and mass
transfer due to a stretching cylinder saturated porous medium
which chemically reactive species [7]. Dulal examined
combined effects of Soret (thermal-diffusion) and Dufour
(diffusion-thermo) on a mixed convection over a stretching
sheet embedded in a saturated porous medium in the presence
of thermal radiation and chemical reaction studied. He found
that temperature profiles increase with increase in Dufour
number [8]. Chatterjee investigate Soret and dufour effects
on MHD convective heat and mass transfer of a power-law
fluid over an inclined plate with variable thermal conductivity
in a porus medium. Nonlinear ordinary differential equations
are solved numerically based on shooting method with Runge-
Kutta Fehlberg integration scheme [9]. Siviglia established
multiple states for flow through a Collapsible tube with
discontinuities. It was established that the complexity of the
fluid-structure gives Collapsible tubes their specific dynamic
features. The numerical solution was obtained by using finite
volume method of the path conservative type [10].

Kanyiri studied the effects of flow parameters (tube
stiffiness and longitudinal tension) on the flow variables of
a Newtonian, steady incompressible fluid flowing through
cylindrical collapsible tube. The result show that the flow
parameter considered are directly proportional to both the
cross sectional area and internal pressure and inversely
proportional to the flow velocity [11]. Ullah investigate a
study of two dimensional unsteady MHD free convection
flow over a vertical plate in the presence of radiation. They
examine radiactive effects on the MHD free convection flow
of an electrically conducting incompressible viscous fluid
over a vertical plate. Dimensionless momentum and energy
equations were solved numerically by using explicit finite
difference method. It was established that velocity profiles
decreases with an increasing Grashof number. Also there was
decline of velocity profiles because of increasing values of
Eckert number as a result heat transfer of the flow reduced
the driving force to the kinetic energy [12]. Kaigalula
investigate fluid flow through a collapsible elastic tube, it is
observed that increase in soret effects causes concentration
distributions to increase [13]. Inyang examine heat transfer
of helical coil in heat exchangers (HCHE). It demonstrated

that the helical heat exchanger provide more excellent heat
transfer performance and effectiveness than straight tubes. It
was obtained that heat transfer coefficient increased with an
increase in curvature ratio of HCHE fot the same flow rates
[14]. [15] in this study, an incompressible viscous fluid flow
and heat transfer in a collapsible tube with heat source or
sink is examined. Mwangi described unsteady MHD fluid
flow in a collapsible tube. The fluid was considered to be
Newtonian. The non linear partial differential equations which
were solved numerically using finite difference method (FDM)
[16]. Anand investigated steady low Reynolds number flow
of a generalized Newtonian fluid through a slender elastic
tube [17]. Mehdari investigated analytical modelling of an
unsteady fluid flow through an elastic tube. The fluid was
considered to be Newtonian and Incompressible, they took
into consideration large Reynolds number and a small aspect
ratio, the tube was assumed to be having a small shell, which
they considered to be the source of asymmetric vibration
[18]. Maurice examine unsteady flow of Newtonian fluid in
collapsible tube. They formulated a mathematical model of a
Newtonian fluid in a collapsible tube to simulate physiological
flows such as flow of blood and urine within human body
system [19]. Chepkonga investigated fluid flow coupled
with heat transfer through a vertical cylindrical collapsible
tube in the presence of magnetic field and an obstacle [20].
Alsemiry investigated numerical solution of blood flow and
mass transport in an elastic tube with multiple stenosis [21].
Idowu investigate effects of thermophoresis, Soret-Dufour on
heat and mass transfer flow of magnetohydrodynamics non-
Newtonian nanofluid over an inclined plate [22]. Priyadharsin
studied the unsteady flow of collapsible tube under transverse
magneto hydrodynamic fluid. Their aim was to determine
the velocity and temperature profiles, and the effects of some
non-dimensional numbers of the taken nanofluid. [23] Xueyu
analyze numerical investigation on the heat and mass transfer
in micro channel with discrete heat sources considering the
Soret and Dufour effects [24]. Moghimi establish Heat
transfer of MHD flow over a Wedge with Surface of Mutable
temperature [25].

Hussain investigate Numerical simulation of MHD two-
dimensional flow incorporated with joule heating and
nonlinear thermal radiation [26].

The study involving Magneto-hydrodynamic flow through a
collapsible tube with mass and heat transfer can be used to
solve practical problems in field like medicine, engineering
and so on. However, the soret and dufour effects on heat and
mass transfer through a collapsible elastic tube with spectral
based collocation technique have received little attention. This
type of problem focused on expanding knowledge on different
numerical techniques and is critical for fluid flows in capillary
tubes such as blood flow in arteries or veins. This can result
inefficient transport of nutrients, waste products, and other
substances throughout the body. Therefore this paper focused
to investigate the combined effects of Soret-Dufour effect
together with Joule heating on unsteady newtonian MHD flow
with mass and heat transfer through a collapsible tube by using
spectral collocation method.
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2. Mathematical Formulation
This research article consider two dimension MHD flow

with mass and heat transfer that takes place along r and z-
directions, then ur and uz are velocity components in r and z

direction respectively with B0 as magnetic field strength and
g is acceleration due to gravity. The qeometry of collapsible
elastic tube is cylindrical whereby the z axis lies along the
center of the tube. The Figure 1 below shows a sketch diagram
of the research problem.

Figure 1. Physical Model of the problem.

The fluid flow is laminar and newtonian. The induced
magnetic field, external electric field and Hall current are
negligible. The difference in internal-external pressure is
constant throughout the tube. The governing equations are
continuity, momentum, energy and Concentration which are
given respectively as:

Continuity equation:

∂uz
∂z

= 0 (1)

Momentum equation:

∂uz
∂t

=
µ

ρ

[
∂2uz
∂r2

+
1

r

∂uz
∂r

]
− σB2

0uz
ρ

+ βtg(T − Tw) + βcg(C − Cw) (2)

Energy equation:(
∂T

∂t
+ uz

∂T

∂z

)
=

κ

ρCp

(
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2

)
+

µ

ρCp

(
∂uz
∂r

)2

+
σu2

zB
2
0

ρCp
+
DmKt

CpCs

(
∂2C

∂r2
+

1

r

∂C

∂r
+
∂2C

∂z2

)
(3)

Concentration equation:
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∂C

∂t
= −uz

∂C

∂z
+Dm

[
∂2C

∂r2
+

1

r

∂C

∂r
+
∂2C

∂z2

]
− kr(C − Cw) +

DmKt

Tm

(
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2

)
(4)

Boundary conditions considered are as follows.
At the centre line of the tube,

uz = U0, T = T0 C = C0 r = 0 (5)

At the wall,

uz = 0, T = TW C = CW r = a(t) (6)

3. Similarity Transformation

The following non-dimensional transformation are used in the equation of continuity, equation of momentum, energy and
concentration as used by ([20, 27–29])

uz = −Q
z
.

1

δm+1
f(η),

ω(η)

δm+1
=

T − Tw
T0 − Tw

,
ω(η)c
δm+1

=
C − Cw
C0 − Cw

, η =
r

a0
(7)

Where f(η) is the dimensionless velocity, ω(η) is the dimensionless temperature and ω(η)c is the dimensionless concentration,
T0 is the temperature at the center of the tube,Tw is the temperature at the wall, C0 is the Concentration at the center of the tube,
Cw is the concentration at the wall, δ is the time dependent length scale and η, m are arbitrary constant.

The following obtained,

f
′′
(η) +

1

η
f

′
(η) +

am+1
0 (m+ 1)

δm+1
λf(η) − σB2

0a
2
0

µ
f(η) − a2

0zδ
m+1

vQ

[
βtg(T − Tw) + βcg(C − Cw)

]
= 0 (8)

− (m+ 1)am−1
0

δm+1
λω(η) =

κ

µ0Cp

(
1

a2
0

ω
′′
(η) +

1

a2
0η
ω

′
(η)

)
+

1

(T0 − Tw)Cp

(
Q2

a2
0z

2

1

δ(m+1)

)(
f

′
(η)
)2

+

σB2
0

µ0(T0 − Tw)Cp

Q2

z2δ(m+1)
f2(η) +

DmKt

νCpCs

(C0 − Cw)

(T0 − Tw)

(
1

a2
0

ω
′′
(η)c +

1

a2
0η
ω

′
(η)c

)
(9)

−µ0a
m−1
0 (m+ 1)

ρδ2(m+1)
λω(η)c = Dm

(
1

a2
0

ω
′′
(η)c

δm+1
+

1

a2
0η

ω
′
(η)c

δm+1

)
+

DmKt

Tma2
0

(T0 − Tw)

(C0 − Cw)

(
ω

′′
(η)

δm+1
+

1

η

ω
′
(η)

δm+1

)
− Γµ0

ρa2
0

ω(η)c
δm+1

(10)

We introduce Non-dimensional parameters which arise from the problem as listed below:

Re =
Ua

ν
, Pr =

Cpµ

κ
,Ec =

U2

Cp 4 T
,Ha = a0B0

√
σ

µ
,Gr =

gβt(Tw − T0)a3
0

ν2
,+

Gc =
gβc(Cw − C0)a3

0

ν2
, Sc =

µ

ρDm
, Sr =

DmKt(T−Tw)

Tm(C − Cw)ν
,Du =

DmKt(C−Cw)

CpCs(T − Tw)ν
,Γ = kr

ρa2

µ
, λ =

ρδm

µam−1

dδ

dt
. (11)

Where Re is Reynolds number, Pr is Prandtl number, Ec is Eckert number, Ha is Hartmann number, Gr is Thermal Grashof
number, Gc is Concentration Grashof number, Sc is Schmidt number, Sr is Soret number, λ is Unsteadiness parameter and Du
is Dufour parameter. By substituting equation (11), in equations (8)-(10) the following set of ODEs obtained

f
′′
(η) +

1

η
f

′
(η) +

am+1
0 (m+ 1)

δm+1
λf(η)−Ha2f(η)− z

a2
0Re

[ω(η)Gr + ω(η)cGc] = 0 (12)

1

Pr
ω

′′
(η) +

1

Prη
ω

′
(η) +

(m+ 1)am+1
0

δm+1
λω(η) +Duω

′′
(η)c +Du

1

η
ω

′
(η)c +

Ec

z2δm+1

(
f

′
(η)
)2

+
Ha2Ec

z2δm+1
f2(η) = 0 (13)
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1

Sc

ω
′′
(η)c

δm+1
+

1

Sc

ω
′
(η)c

ηδm+1
+

(
am+1

0 (m+ 1)

δ2(m+1)
λ− Γ

1

δm+1

)
ω(η)c + Sr

ω
′′
(η)

δm+1
+ Sr

1

η

ω
′
(η)

δm+1
= 0 (14)

The transformed Boundary conditions are as follows,
At the centre line:

f(0) = −zδm+1 ω(0) = δm+1 ω(0)c = δm+1 if η = 0 (15)

At the wall:

f(0) = −zδm+1 ω(0) = δm+1 ω(0)c = δm+1 if η = 0 (16)

The skin friction, the Nusselt number and Sherwood number are defined by [9]

Cf =
τw
ρU2

0

Nu =
a0qh

k(T0 − Tw)
Sh =

a0qm
Dm(C0 − Cw)

(17)

Where τw is the skin shear stress on the surface, qh is the heat flux, qm is the mass flux defined by (18) below

τw = µ
∂u

∂r

∣∣∣∣
r=0

, qh = −κ∂T
∂r

∣∣∣∣
r=0

, qm = −Dm
∂C

∂r

∣∣∣∣
r=0

(18)

By substituting equation (7) in (17) following obtained

Cf = Re−1f
′
(η), Nu =

−ω′
(η)

δm+1
Sh =

−ω′
(η)c

δm+1
(19)

4. Numerical Solution Procedure

Collocation method is the numerical technique used for
solving PDEs by discretizing the PDEs using a set of
collocation points. Method based on the idea of approximating
the solution of PDE by a polynomial function that satisfies
PDE at a finite number of selected points called collocation
points. The collocation method can be applied using different
types of basis functions such as polynomial, trigonometric
etc. The choice of basis function depend on the nature
ofPDEs and geometry of the problem. This method makes
use of solvers with low computation memory that making it
easy to implement in MATLAB code using BVP4C inbuilt
function. This method is the best to solve BVP than any other
numerical technique since is easy to implement and it is also

referred as Pseudo Collocation. The collocation method can
be represented mathematically as:
Consider PDE of the form.

L(u(x)) = F(x) x ∈ [a, b] (20)

where L is linear differential operator, y(x) is unknown
function to be solved, F(x) is a given function. The
Collocation method seek an approximation of the solution
U(x) using linear combination of the basis functions φi(x) is
obtained by

u(x) ≈ U(x) =

N∑
j=1

ciφj(x) (21)

such that

N∑
j=1

cjφj(a) = α,

N∑
j=1

cjφj(b) = β (22)

Where c1, ..., cN are unknown coefficients
To obtain N − 2 equations,N − 2 collocation points are chosen in such a way that they represent the behavior of the solution

over the whole interval
Letting x1 = a and xN = b then

N∑
j=1

cjφj(x1) = α,

N∑
j=2

cjφj(xj) = r(xj),

N∑
j=1

cjφj(xN ) = β, j = 2, 3, ..., N − 1 (23)

The linear system is represented in matrix form as:
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

φ1(x1) φ2(x1) . . φN (x1)
φ1(x2) φ2(x2) . . φN (x2)
φ1(x3) φ2(x3) . . φN (x3)
. .
. .
. .

φ1(xN−1) φ2(xN−1) . . φN (xN−1)
φ1(xN ) φ2(xN ) . . φN (xN )





c1
c2
c3
.
.
.

cN−1

cN


=



α
r(x2)
r(x3)
.
.
.

r(xN−1)
β


If the above matrix is non-singular then the approximate

solution from the spaceU is unique and represented as,

u(x) ≈ U(x) =

N∑
j=1

cjφj(x) x ∈ [a, b] (24)

In this study we are going to use Lagrange basis and
Chebyshev-Gauss-Lobatto collocation points. This is because
the Differentiation matrices due to lagrange basis and
Chebyshev-Gauss-Lobatto collocation points are explicitly
defined by Trefethen. That is there exist explicit formula for
the entries of Differentiation matrix D where lagrange basis
are used [30].

The solution of the differential equations are assummed to
be Lagrange interpolation polynomial of the form

f(η) =

N∑
j=0

Lj(η)fj

ω(η) =

N∑
j=0

Lj(η)ωj

ω(η)c =

N∑
j=0

Lj(η)(ωj)c (25)

Where fj = f(ηj), ωj = ω(ηj), (ωj)c = ω(ηj)c and N + 1
are number of grid points.
The grid points are Chebyshev-Gauss-Lobatto nodes defined
on the interval [−1, 1] by

zi = cos

(
iπ

N

)
for i = 0, 1, 2, ..., N (26)

Usually linear transformation is used to map interval [-1,1]
to computational domain η = [0, 1] then we get

ηi =
1

2
(zi + 1)

The first derivative of f(η) at the grid points is approximated
as follows

f
′
(η) =

N∑
j=0

L
′

j(η)fj

f
′
(ηi) =

N∑
j=0

L
′

j(ηi)fj

=

N∑
j=0

Dij(η)fj i = 0, 1, 2, ..., N (27)

Where Dij = L
′

j(ηi) and D is a Chebyshev differentiation
matrix as defined by [30]
then

F
′

= DF (28)

where F = [f(η0), f(η1), ..., f(ηN )]
T

Higher order derivatives are approximated by F
′′

= D2F .
Now for the the transformed equations.

For Velocity:

[
D2 +

1

η
D +

(
(m+ 1)am+1

0 λ

δm+1
−Ha2

)
I

]
F = R1 (29)

where
R1 =

z

a2
0Re

[ω(η)Gr + ω(η)cGc]

then
A1F = R1

For Temperature:

[
1

Pr
D2 +

1

Prη
D +

(
(m+ 1)am+1

0 λ

δm+1

)
I

]
W = R2 (30)

where

R2 = −
[
Duω

′′
(η)c +

Du

η
ω

′
(η)c +

Ec

z2δm+1
(f

′
(η)2) +

Ha2Ec

z2δm+1
f2(η)

]
.] (31)

then
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A2W = R2

For Concentration:
[

1

Scδm+1
D

2
+

1

Scηδm+1
D +

(
(m+ 1)am+1

0

δ2(m+1)
−

Γ

δm+1

)
I

]
Wc = R3 (32)

Where

R3 = − Sr

δm+1
ω

′′
(η) +

Sr

ηδm+1
ω

′
(η)

then
A3Wc = R3

With boundary conditions

f(η) = 0 ω(1) = 0 ω(1)c = 0 if η = 1

f(0) = −zδm+1 ω(0) = δm+1 ω(0)c = δm+1 if η = 0 (33)

5. Results and Discussion

The numerical solutions of the model’s velocity,
temperature, and concentration profiles while varying various
dimensionless parameters. The effect of each parameter has
been discussed at each stage.

5.1. Velocity Profiles

5.1.1. Effects of Reynolds Number (Re) on Velocity
From Figure 2, it observed that velocity of the fluid in the

flow region increase with increase in the value of Reynolds
number. This is due to the reason that increase in Reynolds
number leads to decrease of viscosity of the fluid decreases.
A decrease in viscosity of the of the fluid leads to reduce
in viscous force in the flow and therefore inertia forces
dominates. Since we know that viscous forces tend to oppose
the motion of the flowing fluid. Also the velocity boundary
layer does not extend more in the free stream region hence
increase in fluid velocity. Conversely when viscous forces
predominate, Reynolds number reduces leads to decrease in
velocity profiles.

5.1.2. Effects of Hartman Number (Ha) on Velocity
In Figure 3 it shows that decrease in Hartman number

leads to increase in velocity profiles. An increase in Hartman
number leads to decrease velocity of the fluid, this is due to
the fact that the presence of uniform magnetic field applied
perpendicular to the flow direction of electrically conducting
fluid leads to induction of Lorentz force. When Hartman
increase cause the increase in the Lorentz force which is
against the fluid flow direction causes the fluid’s flow to slow
down.

5.1.3. Effects of Unsteadiness Parameter (λ) on Velocity
Considering velocity profile Figure 4 it has been observed

that increase in unsteadiness parameter increases velocity
profiles. An increase in unsteadiness parameter leads to
reduce kinematic viscosity. Hence increase in fluid velocity.
Unsteadiness parameter brings about the issue of unsteady
state of the flow and time-dependent scale.

5.1.4. Effects of thermal Grashof Number (Gr) on Velocity
From Figure 5, it depicted that velocity profiles increases as

Grashof number for heat transfer increases. From definition
of Grashof number for heat transfer is a ratio of the thermal
buoyancy force to the viscous force. So when Grashof number
increase lead to reduction in viscosity then viscous force hence
increase in thermal bouyancy force which lead to an increase
in velocity.

5.1.5. Effects of Concentration Grashof Number (Gc) on
Velocity Profiles

From Figure 6, it has illustrated that velocity profiles of
the flow rise up with an increase in the Grashof number for
mass transfer (Gc). Since Grashof number for mass transfer
is represented by ratio of the solutal buoyancy force to the
viscous force. Increasing Grashof number leads to decrease
in the viscosity of the fluid which results to decrease in
the viscous force which results to an increase in the species
buoyancy force and hence increase the velocity profiles.

5.2. Temperature Profiles

5.2.1. Effects of Dufour Number (Du) on Temperature
In Figure 7, it has been illustrated that rise in dufour

parameter leads to rise in temperature distributions. Dufour
parameter is the thermal energy transfer simply (energy flux)
induced by mass concentration gradient, increase in dufour
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number generate heat energy flux which lead to increase in
thickness of thermal boundary layer this lead slow travel of
heat energy, resulting the fluid temperature to rise. This is
due to the fact that dufour number is proportional to the
temperature differences between wall and fluid.

5.2.2. Effects of Reynolds (Re) Number on Temperature
Figure 8, it found that rise in Reynolds number parameter

results into raises in temperature profiles. An increase in
Reynolds number leads to the enhanced rates of shearing
and consequently the viscous dissipation effects. From
literature temperature raises tend to reduce viscous force, thus
when viscosity reduce inertia force become predominant since
Reynolds parameter is the ratio of the inertial forces to viscous
forces. Hence there is direct relation between temperature and
Reynolds parameter.

5.2.3. Effects of Eckert Number (Ec) on Temperature
Figure 9 below it shows that addition in Eckert number leads

to raise in temperature profiles. This is because joule heating
and viscous dissipation increase as a result of increasing fluid
velocity. The velocity is highest at the centre of tube and so
viscous dissipation effects. In this case when there is high
conversion of kinetic energy into internal energy fluid velocity
being high due to fluid particles are in a constant collision and
particles vibration becomes high. A rise in this Eckert number
translates into rise kinetic energy of the fluid particles. This
lead to rise the random movement of the fluid particles results
to collision and generates thermal energy thereby making the
fluids temperature to rise.

5.2.4. Effects of Hartman Number (Ha) on Temperature
Figure 10 depict that the temperature distribution raises with

amplifying in Hartman number. This increase in Hartman
parameter means that magnetic force dominates and viscous
forces reduces. The increased magnetic force leads to thermal
boundary layer to increase since the thermal boundary layer
formed extends into the free stream region which in turn leads
to an increased fluid temperature. From literature we know that
viscosity and temperature are inversely proportional and when
viscosity reduces, this leads to increase of temperature of the
fluid flow in the flow region. Also an increase in Hartman
number leads to an increase in joule heating from induced
electric current. The temperature drops towards the wall of
the tube due to the low velocities near the wall which results in
the low joule heating.

5.2.5. Effects of Soret Number (Sr) on Temperature
From Figure 11, it is obseved that temperature decreases

when soret number increase. This is due to soret number
signifies the contribution of the temperature gradient to the
mass flux in the fluid flow. Temperature decrease with increase
soret number due to it reduce profiles of concentration which
leads to increase in mass transfer in the flow.

5.2.6. Effects of Schmidit (Sc) Number on Temperature
From Figure 12, It found that an increase in Schmidit

number cause a considerable reduction in temperature profiles.

From definition Schimdit number is the ratio of kinematic
viscosity to the mass diffusitivity. An increase in Schimdit
number decrease the mass diffusitivity which results to
increase in viscous force of the fluid and increase in viscocity
will leads to raise in temperature profiles of the fluid.

5.3. Concentration Profiles

5.3.1. Effects of Dufour Number (Du) on Concentration
Figure 13 below it is noted that when there is decrease in

dufour number results into increase in concentration profiles.
This is because increase in dufour number, temperature
gradient effect between the wall and fluid decreases leads to
more heat in fluid. Hence Concentration profiles decrease

5.3.2. Effects of Chemical Reaction Parameter (Γ) on
Concentration

In Figure 14 it was illustrated that addition in chemical
reaction parameter leads to reduce concentration profiles. This
is due to increase in chemical reaction reduces amount of
species in fluid hence the movement of species decrease. When
chemical reaction occur species are consumed during reaction
process. Also it is caused by the negative chemical reaction
which reduces or decreases the concentration boundary layer
thickness and increases the mass transfer.

5.3.3. Effects of Eckert Number (Ec) on Concentration
Figure 15 below, it found that decrease in Eckert number

increase concentration profile. An increase in Eckert
parameter can lead to enhanced heat transfer, which affects the
reaction rates. Higher temperatures resulting from increased
heat transfer can accelerate chemical reactions, leading to
changes in decreasing concentration profiles. Therefore
concentration profiles increase as the results of reducing in
Eckert number.

5.3.4. Effects of Soret Number (Sr) on Concentration
Figure 16, It has been noted that increase in Soret number

reduces concentration profiles. This dimensionless number
explain the mass species are separeted in the mixture which
is driven by temperature gradient of the flow.

5.3.5. Effects of Schmidt Number (Sc) on Concentration
From Figure 17, it is observed that concentration profiles

reduced as the Schmidit number increases. This is due to
increase in Schmidit number reduces the mass diffusivity as
they are in inverse relation which results to decrease in the
concentration profiles of the fluid.

5.3.6. Effects of Concentration Grashof Number (Gc) on
Concentration

From Figure 18 It has illustrated that increase in Grashof
number for mass transfer leads to decrease concentration
profiles. This is due to increase in Grashof number increases in
concentration gradient which tend to enhance mass buoyancy
effect. The mass buoyanc effect is more at the centre of
tube and less toward the wall then reduces the concentration
profiles.
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Figure 2. Velocity profiles for different values ofRe.

Figure 3. Velocity profiles for different values ofHa.
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Figure 4. Velocity profiles for different values of λ.

Figure 5. Velocity profiles for different values ofGr.
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Figure 6. Velocity profiles for different values ofGc.

Figure 7. Temperature profiles for different values ofDu.
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Figure 8. Temperature profiles for different values ofRe.

Figure 9. Temperature profiles for different values ofEc.
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Figure 10. Temperature profiles for different values ofHa.

Figure 11. Temperature profiles for different values of Sr.
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Figure 12. Temperature profiles for different values of Sc.

Figure 13. Concentration profiles for different values ofDu.
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Figure 14. Concentration profiles for different values of Γ.

Figure 15. Concentration profiles for different values ofEc.



Applied and Computational Mathematics 2024; 13(1): 8-28 23

Figure 16. Concentration profiles for different values of Sr.

Figure 17. Concentration profiles for different values of Sc.
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Figure 18. Concentration profiles for different values ofGc.

5.4. Effects of Variation of Parameters on Skin Friction

From table 1, It is noted that increase in the values of
Reynolds number, skin friction decreases. This due to the
reason that skin friction depend on the viscous forces of the
fluid. So the higher the Reynolds number tend to reduce the
viscous force hence skin friction reduce. it has been observed
that increase in Eckert number and Pradit number there is an

increase in skin friction. Also the thermal and concentration
Grashof number, Hartman number and unsteadiness parameter
increases skin friction as they increase. Furthermore, An
increase in the Soret number and Dufour number results in
increased skin friction.

The table 1 below show the results of Skin friction for
various values of physical parameters.

Table 1. Skin friction coefficient for various values of dimensionless numbers.

Pr Ec Sc Sr Re Γ λ Gr Gc Du Ha Cf

0.71 0.22 0.2 1 3 0.1 0.1 1 1 1 1 0.5219096

2 0.22 0.2 1 3 0.1 0.1 1 1 1 1 0.5247935

0.71 5 0.2 1 3 0.1 0.1 1 1 1 1 0.5267075

0.71 0.22 1.5 1 3 0.1 0.1 1 1 1 1 0.5230474

0.71 0.22 0.2 2 3 0.1 0.1 1 1 1 1 0.52188582

0.71 0.22 0.2 1 5 0.1 0.1 1 1 1 1 0.3101531

0.71 0.22 0.2 1 3 1.5 0.1 1 1 1 1 0.5218948

0.71 0.22 0.2 1 3 0.1 1 1 1 1 1 0.4629746

0.71 0.22 0.2 1 3 0.1 0.1 10 1 1 1 0.5797684

0.71 0.22 0.2 1 3 0.1 0.1 1 10 1 1 0.5763336

0.71 0.22 0.2 1 3 0.1 0.1 1 1 2 1 0.5762769

0.71 0.22 0.2 1 3 0.1 0.1 1 1 0.1 1.2 0.5832763

5.5. Effects of Variation of Parameters on Rate Heat
Transfer

The following are the observable effects of different
parameters on Nusselt number as shown in Table 2. Rise in

Prandtl number results to an increase in the Nusselt number.
A low Prandtl number indicates that heat conduction is more
influential than convection. When the Prandtl number is
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high, convection is more effective than pure conduction in
transferring energy from an area, so momentum diffusivity
is dominant. The Nusselt number increases with rise in
the Eckert number, Reynolds, Dufour number, Reynolds
parameter, unsteadiness parameter and Hartmann number.

There is little or no change in the Nusselt number when the
Schmidt number, Soret number, chemical reaction parameter
and concentration Grashof number are altered. However, the
Nusselt number slightly decreases when the thermal Grashof
number increased.

Table 2. Nusselt number for various values of dimensionless numbers.

Pr Ec Sc Sr Re Γ λ Gr Gc Du Ha Nu

0.71 0.22 0.2 1 3 0.1 0.1 1 1 1 1 -0.9775911

3 0.22 0.2 1 3 0.1 0.1 1 1 1 1 -1.0027663

0.71 5 0.2 1 3 0.1 0.1 1 1 1 1 -1.0164227

0.71 0.22 1.5 1 3 0.1 0.1 1 1 1 1 -0.9731386

0.71 0.22 0.2 2 3 0.1 0.1 1 1 1 1 -0.9780804

0.71 0.22 0.2 1 5 0.1 0.1 1 1 1 1 -0.9795281

0.71 0.22 0.2 1 3 1.5 0.1 1 1 1 1 -0.9777634

0.71 0.22 0.2 1 3 0.1 1 1 1 1 1 -0.9795529

0.71 0.22 0.2 1 3 0.1 0.1 10 1 1 1 -0.9778123

0.71 0.22 0.2 1 3 0.1 0.1 1 10 1 1 -0.9779078

0.71 0.22 0.2 1 3 0.1 0.1 1 1 2 1 -0.9783239

0.71 0.22 0.2 1 3 0.1 0.1 1 1 0.1 1.2 -0.9778536

5.6. Effects of Variation of Parameters on Mass Transfer
Rate

It has been depicted in Table 3 that when there is increase
in chemical reaction number, dufour parameter and prandtl

number, the Sherwood number is reduced. On the other side,
the Sherwood number is increased when the Eckert, Schmit, or
Soret numbers are raised. However, there is little or no effect
of the Reynolds number, unsteadiness parameter, Grashof
numbers, or Hartmann number on the Sherwood number.

Table 3. Sherwood number for various values of dimensionless numbers.

Pr Ec Sc Sr Re Γ λ Gr Gc Du Ha Sh

0.71 0.22 0.2 1 3 0.1 0.1 1 1 1 1 -0.9743499

2 0.22 0.2 1 3 0.1 0.1 1 1 1 1 -0.9723692

0.71 5 0.2 1 3 0.1 0.1 1 1 1 1 -0.9809951

0.71 0.22 1.5 1 3 0.1 0.1 1 1 1 1 -1.008994

0.71 0.22 0.2 2 3 0.1 0.1 1 1 1 1 -0.9736637

0.71 0.22 0.2 1 5 0.1 0.1 1 1 1 1 -0.9744119

0.71 0.22 0.2 1 3 1.5 0.1 1 1 1 1 -0.9741096

0.71 0.22 0.2 1 3 0.1 1 1 1 1 1 -0.9745738

0.71 0.22 0.2 1 3 0.1 0.1 10 1 1 1 -0.9743552

0.71 0.22 0.2 1 3 0.1 0.1 1 10 1 1 -0.9743596

0.71 0.22 0.2 1 3 0.1 0.1 1 1 3 1 -0.9740929

0.71 0.22 0.2 1 3 0.1 0.1 1 1 0.1 1.2 -0.9743472

5.7. Validation

Comparison with previous studies available in the literature
has been done and an excellent agreement established. These
results agrees with [27] when there is absence of dufour
effect. The findings were When Eckert number (Ec) was
increased the temperature and velocity profiles increased.
Also When magnetic parameter (Ha) increase, velocity profile
decrease while temperature raised and when Soret number (Sr)
increased it reduces concentration profiles.

6. Conclusions

This study has investigate soret and dufour effects on
unsteady Newtonian MHD fluid with mass and heat transfer
in a Collapsible tube by using Spectral Based Collocation
Method. This paper has developed model of the mathematical
equations governing the fluid flow in a cylindrical collapsible
elastic tube. This equations were non-linear partial differential
equations which later were converted to non-linear ordinary
differential equations and solved using bvp4c in MATLAB.
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The results have shown that the equations can be used to
predict MHD fluid flow through a collabsible elastic tube
for different behaviors. The obtained model is significant
for the field as it provide framework for understanding and
predicting MHD flow in similar systems. However this model
of mathematical equations are based on a certain assumptions
and limitations. Also this study has determined the velocity,
concentration, and temperature profiles of the fluid flow
through a cylindrical collapsible tube. The effect of varying
various flow parameters on the velocity, concentration and
temperature distributions have been determined and the results
are presented graphically and it leads to conclusion that:

1. The fluid velocity increase with increase in Reynolds
number (Re), thermal Grashof number (Gr), Soret
number (Sr), while decrease with increase in Hartman
number (Ha).

2. The temperature of the fluid increases with increase
Reynolds number (Re), Eckert number (Ec), Hartman
number (Ha), Schmidt number (Sc) while decrease with
increase in Dufour number (Du) and Soret number (Sr).

3. The concentration of the fluid decrease with increase in
Dufour number (Du), chemical reaction parameter (Γ),
Eckert number (Ec) whereas increase with an increase
in Soret number (Sr)

4. The rate of heat transfer increase with an increase in

Eckert number (Ec), Prandtl number (Pr), Hartman
number (Ha), Unsteadiness parameter (λ). There is a
little or no change in the Nusselt number (Nu) with
change in Soret number (Sr), Schmidt number (Sc),
Reynolds number (Re), chemical reaction parameter (Γ)
and concentration Grashof number (Gc).

5. The Mass transfer rate decrease with increase in Prandtl
number (Pr), chemical reaction parameter (Γ) while
increase with increase Eckert number (Ec), Schmidt
number (Sc) and Soret number (Sr). However no
effective change in Hartman number Ha, thermal
Grashof number (Gr), Reynolds number (Re) and
Unsteadiness parameter (λ)

The results obtained from this study can be used in medicine
where by the skin-friction coefficient is very important since
it enables regulation of blood pressure, preventing of blood
clots which may cause a serious health issue i.e stroke. Hence
addressing skin friction-related issues is essential in preventing
and managing cardiovascular diseases. Also it can be used in
thermotherapy, where controlled heat is used to treat injuries
or conditions like muscle pain, arthritis.

Future work can be conducted on steady, three-dimensional,
MHD fluid flow of mass and heat transfer through collapsible
tubes with varying magnetic field for laminar flow.

Nomenclature

uz Vertical velocity, meters (ms−1) m Arbitrary constant
uθ Angular velocity, rad (rad s−1) I Electric current, Ampere (A)
ur Radial velocity, meters (ms−1) J Electric current density, (Am−2)
u Speed of the fluid, (ms−1). −→q Velocity vector
c Speed of light, meters (ms−1)

−→
E Electric current vector

c(z) Constant function of z
−→
Fi Body forces, (Nm)

r Radius of the tube, meters (m) Fg Force due to gravity
a0 Characteristic radius, meters (m)

−→
FL Lorentz Force

z Axial coordinate, meters (m)
−→
B Magnetic vector

t Time, seconds (s) ∇ Vector differential operator
B0 Constant magnetic field, Tesla (T) ∇2 Laplacian operator
Kt Thermal diffusion ratio R Rate of chemical reaction
T Temperature, kelvin (K) g Gravitational constant, (Nm2kg−2)
T0 Temperature at the center, kelvin (K) qh Heat flux, (Wm−2)
Tw Temperature at the wall, kelvin (K) qm Mass flux, (kg m−2s−1)
Tm Mean temperature, kelvin (K) Re Reynolds number
C Concentration, mole per cubic meter mol/m3 Pr Prandtl number
C0 Concentration at the center, mole per cubic meter mol/m3 Ec Eckert number
Cw Concentration at the wall, mole per cubic meter mol/m3 Ha Hartmann number
Cs Concentration Susceptibility Gr Thermal Grashof number
Cp Specific heat capacity, (J kg−1 K−1) Gc Concentration Grashof number
Dm Concentration diffusion parameter, (m2s−1) Sc Schmidt number
kr Chemical reaction coefficient, (Ms−1) Sr Soret number
Q Discharge, (m3s−1) Du Dufour parameter
f(η) Dimensionless velocity Cf Skin friction coefficient
P Pressure, (Nm−2) Nu Nusselt number
V Volume, (m3) Sh Sherwood number
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