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Abstract: This paper discuss two important results for a fractional hybrid boundary value problem of Riemann-Liouville
integro-differential systems, the researches and the advance in this field and also the importance of this subject in the modeling of
nonlinear real phenomena corresponding to a great variety of events gives the motivation to study this boundary value problem.
The results are as follow, the first result consider the existence and uniqueness results of solutions for a fractional hybrid boundary
value problem of Riemann-Liouville integro-differential system this result based on Krasnoslskii fixed point theorem for a sum of
two operators, the second result is the uniqueness of solution for fractional hybrid boundary value problem of Riemann-Liouville
integro-differential systems, the main result is based on Banach fixed point theorem, both results comes after transforming the
system into Volterra integral system then transform again into operator system, then using fixed point theory to prove the results,
this articule was ended buy an example to well illustrat the results and ideas of proof.
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1. Introduction
Nonlinear differential equations are crucial tools in the

modeling of nonlinear real phenomena corresponding to a
great variety of events, in relation with several fields of
the physical sciences and technology. For instance, they
appear in the study of the air motion or the fluids dynamics,
electricity, electromagnetism, or the control of nonlinear
processes, among others [1-8]. There solution of nonlinear
differential equations requires, in general, the development
of different techniques in order to deduce the existence and
other essential properties of the solutions [9-15]. There are
still many open problems related the solvability of nonlinear

systems, apart form the fact that this is a field where advances
are continuously taking place.

Perturbation techniques are useful in the nonlinear analysis
for studying the dynamical systems represented by nonlinear
differential and integral equations. Evidently, some differential
equations representing a certain dynamical system have no
analytical solution, so the perturbation of such problems
can be helpful. The perturbed differential equations are
categorized into various types. An important type of these
such perturbations is called a hybrid differential equation (i.e.
quadratic perturbation of a nonlinear differential equation).
In [16] T. Bashiri et al. have considered the following non
cooperative system with the fractional order p ∈ (0, 1).

Dp [u (t)− f (t, u (t))] = g (t, v (t) , Iα (v (t)))

Dp [v (t)− f (t, v (t))] = g (t, u (t) , Iα (u (t)))

u (0) = 0, v (0) = 0 , α > 0,
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and investigated the existence of solutions. In [17] V.
Daftardar-Gejji proposed the following fractional differential
system given by

Dαiui = fi (t, u1, ..., un) , 0 < αi < 1, 1 < i < n,

and analysed the existence of positive solutions of the system
in detail. In [18] S. Lui have considered the following
cooperative system with the fractional order α, β ∈ (0, 1)

Dα [u (t)− Φ (t, u (t))] = f (t, u (t) , v (t))

Dβ [v (t)− Ψ (t, v (t))] = g (t, u (t) , v (t))

u (0) = u (1) = 0 , v (0) = v (1) = 0

In [25] B. Ahmed and all, study existence and uniqueness
results for a nonlinear coupled system involving Caputo
fractional derivatives with a new kind of coupled boundary

conditions

Dαu (t) = f (t, u (t) , v (t))

Dβv (t) = g (t, u (t) , v (t))

(u+ v)(0) = −(u+ v)(T ) ,

∫ ε

η

(u− v)(s)ds = A.

Where Dχ is the Caputo fractional derivative operator of
order χ ∈ α, β, α, β ∈ (0, 1]. A is nonnegative constant, and
f, g : [0, T ]× R2 7→ R are continuous functions.

Compared with the problem in [16], it is more partical to
study the coupled system with different perturbation terms
and nonlinearities. However, obviously, the mathematical
model this case is more complex and more difficult to deal
with in mathematics. Compared with the problem in [18] the
perturbation terms is not that much complecated.

In this paper, we study the existence of solutions for
a Dirichlet-type boundary value problem for the following
fractional hybrid integro-differential system given by

Dα

[
x (t)

f1 (t, x (t))

]
= g1 (t, x (t) , y (t)) + Iα−1h1 (t, x (t) , y (t)) , (1)

Dγ

[
y (t)

f2 (t, y (t))

]
= g2 (t, x (t) , y (t)) + Iγ−1h2 (t, x (t) , y (t)) , (2)

x (0) = x (1) = 0, y (0) = y (1) = 0, (3)

where Dα denotes the Riemann-Liouville fractional derivative
of order α, (1 < α 6 2), Dγ denotes the Riemann-Liouville
fractional derivative of order γ, (1 < γ 6 2), and Iα is the
Riemann-Liouville fractional integral with order α > 0, and
Iγ is the Riemann-Liouville fractional integral with order
γ > 0, fi ∈ C (J × R,R \ {0}), i = 1, 2, and gi ∈
C (J × R× R,R), i = 1, 2 and hi ∈ C (J × R× R,R) ,
i = 1, 2.

The rest of paper is organized as follows. In section 2,
we recall some useful preliminaries. Section 3 contains the
existence and uniqueness result which is obtained by means of
Banach fixed point theorem. Section 4 contains the existence
result which is obtained by means of Krasnoselskii fixed point
theorem. Section 5 contains two exemples to illestrait our main
results.

2. Preliminaries
For the convenience of the reader, we present here

some necessary definitions from fractional calculus theory.
These definitions and properties can be found in the recent
monograph [20-25].

Definition 2.1. The Riemann-Liouville fractional integral of
order α > 0 of a function f : (0,∞) 7→ R is given by

Iαf (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 f (s) ds, (4)

provided that the right-hand side is defined pointwise, where
Γ (.) is the Gamma function.

Definition 2.2. Given a continuous function f : (0,∞) −→
R, its fractional derivative with order α > 0 in the sense of
Riemann-Liouville, is given

Dαf (t) =
1

Γ (n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1 f (s) ds, (5)

where n = [α] + 1.
Lemma 2.1. [19] Assume that u ∈ C(0, 1) ∩ L(0, 1) with a

fractional derivative of order α > 0 . Then

IαDαu(t) = u(t) + c1t
α−1 + c2t

α−2 + ...+ cnt
α−n,

for some ci ∈ R, i = 1, 2..., n, where n = [α] + 1
Lemma 2.2 (Ascoli-Arzela theorem). A be a subset of

C (J,E), A is relatively compact in C (J,E) if and only if
the following conditions are checked:

(i) The unit A is limited.
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∃k > 0 such that ‖f (x) ‖E ≤ k for x ∈ J and f ∈ A.
(ii) Unit A is equicontinuous.
∀ε > 0,∃δ > 0 and for evry t1, t2 ∈ J we have
|t1, t2| < δ ⇒ ‖f (t1)− f (t2) ‖E < ε.

(iii) For any x ∈ J the unit {f (x) , f ∈ A} ⊂ E is relatively
compact.

Lemma 2.3 (Banach fixed point theorem). Let X be a non-
empty complete metric space, and T : X 7→ X is a contraction
mapping. Then, there exists a unique point x ∈ X such that
Tx = x.

Lemma 2.4 (Krasnoselskii fixed point theorem). Let E be
a non-empty, bounded, closed and convex subset in Banach

space X: If A,B : E 7→ Esatisfy the following assumptions:
1. Ax+By ∈ E, for every x, y ∈ X ,
2. A is a contraction,
3. B is compact and continuous.

Then, there exists z ∈ X such that Az +Bz = z.

3. Existence Result

Suppose that α, γ, and functions fi, gi, hi, i = 1, 2 satisfy
the problem (1) (2) (3). Then the unique solution of
(1) (2) (3) is given by

Lemma 3.1.

x(t) = f1(t, x(t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
−
[∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
t, (6)

y(t) = f2(t, y(t))

[∫ t

0

(t− s)γ−1

Γ(γ)
g2(s, x(s), y(s))ds+

∫ t

0

(t− s)2γ−2

Γ(2γ − 1)
h2(s, x(s), y(s))ds

]
−
[∫ 1

0

(1− s)γ−1

Γ(γ)
g2(s, x(s), y(s))ds+

∫ 1

0

(1− s)2γ−2

Γ(2γ − 1)
h2(s, x(s), y(s))ds

]
t. (7)

Proof. We apply the Riemann-Liouville fractional integral Iα and Iβ on the both sides of (6) and (7) respectivelly, and using
Lemma 2.1, we have

x (t)

f1 (t, x (t))
= Iαg1(t, x(t), y(t)) + I2α−1h1(t, x(t), y(t)) + c1t+ c2,

y (t)

f2 (t, y (t))
= Iγg2(t, x(t), y(t)) + I2γ−1h2(t, x(t), y(t)) + c3t+ c4,

then

x (t) = f1 (t, x (t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds+ c1t+ c2

]
, (8)

y (t) = f2 (t, y (t))

[∫ t

0

(t− s)γ−1

Γ(γ)
g2(s, x(s), y(s))ds+

∫ t

0

(t− s)2γ−2

Γ(2γ − 1)
h2(s, x(s), y(s))ds+ c3t+ c4

]
, (9)

where c1, c2c3 and c4 ∈ R. Using the boundary value conditions, we fined that

c1 = −
∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x(s), y(s))ds−

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds,

c2 = 0,

c3 = −
∫ 1

0

(1− s)γ−1

Γ(γ)
g2(s, x(s), y(s))ds−

∫ 1

0

(1− s)2γ−2

Γ(2γ − 1)
h2(s, x(s), y(s))ds,

c4 = 0.

Substituting the values of c1 and c2 in (8), c3 and c4 in
(9), we get solution (6) (7). The converse follows by direct
computation. This completes the proof.

Our first result concerns the study of existence of solution
for problem (1 − 3) by using the Krasnoselskii fixed-point
theorem. For this fact, we will need some assumptions about
the functions fi, gi and hi, i = 1, 2, previously defined.

Denote by X = (C([0, 1] × R) × C([0, 1] × R),R). The
Banach space endowed with the norm ‖(x, y)‖ = ‖x‖+‖y| =

supt∈[0,1] |x(t)|+ supt∈[0,1] |y(t)|, for (x, y) ∈ X .
H1 The functions fi : J×R −→ R\{0}, and hi : J×R −→

R, i = 1, 2 are continuous and there exist positives functions
φi, ψi, i = 1, 2 with bounds ‖φi‖ and ‖ψi‖ respectively, such
that

|fi (t, x)− fi (t, y)| 6 φi (t) |x− y| ,

and
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|gi (t, x1, y1)− gi (t, x2, y2)| 6 χi (t) |x1 − x2|+ κi (t) |y1 − y2| ,
|hi (t, x1, y1)− hi (t, x2, y2)| 6 ψi (t) |x1 − x2|+ ϕi (t) |y1 − y2| ,

i = 1, 2 for all t ∈ J and xi, yi ∈ R.
H2 There exists positive constants Ci,Ki, i = 1, 2, such that

|g1(t, x1, y1)− g1(t, x2, y2)| 6 C1 ‖x1 − x2‖+ C2 ‖y1 − y2‖ ,

|g2(t, x1, y1)− g2(t, x2, y2)| 6 C3 ‖x1 − x2‖+ C4 ‖y1 − y2‖ ,

|h1(t, x1, y1)− h1(t, x2, y2)| 6 K1 ‖x1 − x2‖+K2 ‖y1 − y2‖ .

|h2(t, x1, y1)− h2(t, x2, y2)| 6 K3 ‖x1 − x2‖+K4 ‖y1 − y2‖ .

H3 There exists two constants M0,M1 > 0 such that

|h1 (t, x, y)| 6M0,

and

|h2 (t, x, y)| 6M1.

H4 There exist two nonnegative functions µi, ηi ∈ L1(J), i = 1, 2 such that for (x, y) ∈ R× R and t ∈ J .

|gi(t, x(t), y(t))| 6 µi(t), |hi(t, x(t), y(t))| 6 ηi(t).

H5 There exists a constant M such that
|fi(t, u(t))| 6M.

Theorem 3.1. Assume that the assumptions (H1)(H4), and (H5) hold. If

C

(
1

Γ(α+ 1)
+

1

Γ(2α)

)
< 1,

K

(
1

Γ(γ + 1)
+

1

Γ(2γ)

)
< 1

then the fractional integro-differential problem (1)(2)(3) has at least one solution in X = on J .
Proof. First, we will transform problem (1)(2)(3) into a fixed point problem Tx = x, where T is the operator defined above.

So, before starting the proof, we decompose Ti into a sum of two operators Ai and Bi, i = 1, 2 where

A1(x, y)(t) = f1(t, x(t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
,

A2(x, y)(t) = f2(t, y(t))

[∫ t

0

(t− s)γ−1

Γ(γ)
g2(s, x(s), y(s))ds+

∫ t

0

(t− s)2γ−2

Γ(2γ − 1)
h2(s, x(s), y(s))ds

]
,

and

B1(x, y)(t) = −
(∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

)
t,

B2(x, y)(t) = −
(∫ 1

0

(1− s)γ−1

Γ(γ)
g2(s, x(s), y(s))ds+

∫ 1

0

(1− s)2γ−2

Γ(2γ − 1)
h2(s, x(s), y(s))ds

)
t.

Observe that

T1(x, y) = A1(x, y) +B1(x, y),

T2(x, y) = A2(x, y) +B2(x, y).
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Now, we show that the operators A1, A2 and B1, B2 satisfy all the conditions of Lemma 2,4 in a series of steps.
Step 1. We define the set

Ω = {(x, y) ∈ X, ‖(x, y)‖X 6 ρ}

where ρ is a positive real constant chosen so that

(M + 1)

(
‖µ1‖

Γ(α+ 1)
+
‖η1‖

Γ(2α)

)
6 ρ (10)

and we show that Ai +Bi ∈ Ω. So, for (x, y) ∈ Ω and t ∈ J , we have

|A1(x, y)(t) +B1(x, y)(t)|

6 |f1(t, x(t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
−
[∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
t|

6 |f1(t, x(t))|
(∫ t

0

(t− s)α−1

Γ(α)
|g1(s, x(s), y(s))| ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
|h1(s, x(s), y(s))| ds

)
+

∫ 1

0

(1− s)α−1

Γ(α)
|g1(s, x(s), y(s))| ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
|h1(s, x(s), y(s))| ds

6 M

(∫ t

0

(t− s)α−1

Γ(α)
µ1(t)ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
η1(t)ds

)
+

∫ 1

0

(1− s)α−1

Γ(α)
µ1(t)ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
η1(t)ds

6 M

(
‖µ1‖

Γ(α+ 1)
+
‖η1‖

Γ(2α)

)
+

(
‖µ1‖

Γ(α+ 1)
+
‖η1‖

Γ(2α)

)
6 (M + 1)

(
‖µ1‖

Γ(α+ 1)
+
‖η1‖

Γ(2α)

)
6 ρ.

Thus, ‖A1(x, y) +B1(x, y)‖X 6 ρ which means that A1(x, y) +B2(x, y) ∈ Ω.
Analogously, we can obtain

|A2(x, y)(t) +B2(x, y)(t)|

6 (M + 1)

(
‖µ2‖

Γ(γ + 1)
+
‖η2‖
Γ(2γ)

)
6 ρ.

Thus, ‖A2(x, y) +B2(x, y)‖X 6 ρ which means that A2(x, y) +B2(x, y) ∈ Ω.
Step 2. Bi is a contraction on Ω. From the definition of the operators Bi, i = 1, 2, we have for (x1, y1), (x2, y2) ∈ Ω, and

t ∈ J

|B1(x1, y1)(t)−B1(x2, y2)(t)|

6 |
∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x1(s), y1(s))ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x1(s), y1(s))ds

−
∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x2(s), y2(s))ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x2(s), y2(s))ds|

6
∫ 1

0

(1− s)α−1

Γ(α)
|g1(s, x1(s), y1(s))− g1(s, x2(s), y2(s))| ds

+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
|h1(s, x1(s), y1(s))− h1(s, x2(s), y2(s))| ds

6
∫ 1

0

(1− s)α−1

Γ(α)
C1(x1(s)− x2(s)) + C2(y1(s)− y2(s))ds
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+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
C1(x1(s)− x2(s)) + C2(y1(s)− y2(s))ds

6
C1 ‖x1 − x2‖+ C2 ‖y1 − y2‖

Γ(α+ 1)
+
C1 ‖x1 − x2‖+ C2 ‖y1 − y2‖

Γ(2α)

6 C

(
1

Γ(α+ 1)
+

1

Γ(2α)

)
(‖x1 − x2‖+ ‖y1 − y2‖)

6 C

(
1

Γ(α+ 1)
+

1

Γ(2α)

)
‖(x1 − x2, y1 − y2)‖

Analogously, we can obtain

|B2(x1, y1)(t)−B2(x2, y2)(t)|

6 K

(
1

Γ(γ + 1)
+

1

Γ(2γ)

)
‖(x1 − x2, y1 − y2)‖

Hence, from (4.1), it follows that Bi, i = 1, 2 is a contraction on Ω.
Step 3. Ai is completely continuous on Ω. Then we show that (AiΩ) is uniformly bounded, (AiΩ) is equi-continuous, and

Ai : Ω 7→ Ω is continuous.
For (x, y) ∈ Ω and t ∈ J , we have

|A1(x, y)(t)| 6

∣∣∣∣f1(t, x(t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]∣∣∣∣
6 |f1(t, x(t))|

[∫ t

0

(t− s)α−1

Γ(α)
|g1(s, x(s), y(s))| ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
|h1(s, x(s), y(s))| ds

]
6 M

(∫ t

0

(t− s)α−1

Γ(α)
µ1(s)ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
η1(s)ds

)
6 M

(
‖µ1‖

Γ(α+ 1)
+
‖η1‖

Γ(2α)

)
Analogously, we can obtain

|A2(x, y)(t)| 6M

(
‖µ2‖

Γ(γ + 1)
+
‖η2‖
Γ(2γ)

)
Then, (AiΩ) is uniformly bounded. Now we show that (AiΩ) is equicontinuous
Let t1, t2 ∈ J with t1 < t2 we have for any (x, y) ∈ Ω

|A1(x, y)(t2)−A1(x, y)(t1)|

6 |f1(t2, x(t2))

[∫ t2

0

(t2 − s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t2

0

(t2 − s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
−f1(t1, x(t1))

[∫ t1

0

(t1 − s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t1

0

(t1 − s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
|

6 M

[ ∫ t2

0

(
(t2 − s)α−1

Γ(α)
− (t1 − s)α−1

Γ(α)

)
|g1(s, x(s), y(s))| ds

+

∫ t2

0

(
(t2 − s)2α−2

Γ(2α− 1)
− (t1 − s)2α−2

Γ(2α− 1)

)
|h1(s, x(s), y(s))| ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
|g1(s, x(s), y(s))| ds+

∫ t2

t1

(t1 − s)2α−2

Γ(2α− 1)
|h1(s, x(s), y(s))| ds

]
6 M

[
‖µ1‖

∫ t2

0

(
(t2 − s)α−1

Γ(α)
− (t1 − s)α−1

Γ(α)

)
ds+ ‖η1‖

∫ t2

0

(
(t2 − s)2α−2

Γ(2α− 1)
− (t1 − s)2α−2

Γ(2α− 1)

)
ds

+ ‖µ1‖
∫ t2

t1

(t2 − s)α−1

Γ(α)
ds+ ‖η1‖

∫ t2

t1

(t1 − s)2α−2

Γ(2α− 1)
ds

]
.
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Analogously, we can obtain

|A1(x, y)(t2)−A1(x, y)(t1)|

6 M

[
‖µ2‖

∫ t2

0

(
(t2 − s)γ−1

Γ(γ)
− (t1 − s)γ−1

Γ(γ)

)
ds+ ‖η2‖

∫ t2

0

(
(t2 − s)2γ−2

Γ(2γ − 1)
− (t1 − s)2γ−2

Γ(2γ − 1)

)
ds

+ ‖µ2‖
∫ t2

t1

(t2 − s)γ−1

Γ(γ)
ds+ ‖η2‖

∫ t2

t1

(t1 − s)2γ−2

Γ(2γ − 1)
ds

]
.

which is independent of (x, y) ∈ Ω. As t1 −→ t2, the right-
hand side of the obove inequalities tend to zero. Therefore, it
follows that (AiΩ) is equicontinuous.

Step 4. Finally we show that the operators A1, A2 are
continuous in X . Let {(xn, yn)} be a sequance in Ω
converging to a point (x, y) ∈ Ω. Then by Lebesgue
domination convergence theorem, for all t ∈ J we obtain

lim
n 7→∞

A1(xn, yn)(t)

= lim
n 7→∞

f1(t, xn(t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, xn(s), yn(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, xn(s), yn(s))ds

]
= lim

n 7→∞
f1(t, xn(t))

[∫ t

0

(t− s)α−1

Γ(α)
lim
n 7→∞

g1(s, xn(s), yn(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
lim
n 7→∞

h1(s, xn(s), yn(s))ds

]
= f1(t, x(t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
= A1(x, y)(t).

Same prove for the operator A2.
Consequently, Ai is continuous. Therefore, Ai is also

relatively compact on Ω.
Owing to the Arzela-Ascoli theorem, it follows that Ai is

compact on Ω. Then by Krasnoselskii’s fixed-point theorem,
the operatorAi+Bi has a fixed point in Ω. Finally, we deduce
that problem (1-3) has at least one solution in X on J .

4. Existence and Uniqueness Result
This section is devoted to the study of existence and

uniqueness of solution of problem (1− 3) using Banach fixed-
point theorem.

Theorem 4.1. Assume that the assumptions (H1), (H2), and
(H3) hold, then the fractional integro-differential system (1 −
3) has a unique solution in X on J .

Proof In view of Lemma 3.1 we introduce an operator T :
X 7→ X associated with the problem (1− 3) as follows

T (x, y)(t) = (T1(x, y)(t), T2(x, y)(t)), (11)

T1(x, y)(t) = f1(t, x(t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
−
[∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
t, (12)

T2(x, y)(t) = f2(t, y(t))

[∫ t

0

(t− s)γ−1

Γ(γ)
g2(s, x(s), y(s))ds+

∫ t

0

(t− s)2γ−2

Γ(2γ − 1)
h2(s, x(s), y(s))ds

]
−
[∫ 1

0

(1− s)γ−1

Γ(γ)
g2(s, x(s), y(s))ds+

∫ 1

0

(1− s)2γ−2

Γ(2γ − 1)
h2(s, x(s), y(s))ds

]
t. (13)

Now, we show that the operator T has a fixed point in Br
which represents the unique solution of our problem (1 − 3).
So, the proof is down in two steps.

Step 1. We will show that TiBr ⊂ Br, i = 1, 2. We get for
each t ∈ J and x ∈ Br
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|T1(x, y)(t)|

6 |f1(t, x(t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
−
[∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

]
t|

6 |f1 (t, x (t))|∣∣∣∣∫ t

0

(t− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

∣∣∣∣
+

∣∣∣∣(∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x(s), y(s))ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x(s), y(s))ds

)
t

∣∣∣∣
6 (|f1 (t, x (t))− f1 (t, 0)|+ |f1 (t, 0)|)∫ t

0

(t− s)α−1

Γ(α)
|g1(s, x(s), y(s))| ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
|h1(s, x(s), y(s))| ds

+

(∫ 1

0

(1− s)α−1

Γ(α)
|g1(s, x(s), y(s))| ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
|h1(s, x(s), y(s))| ds

)
t

6 (r1 ‖φ1‖+ F10)∫ 1

0

(1− s)α−1

Γ(α)
u(s)ϕ1(x, y)ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
|(h1(s, x(s), y(s))− h1(s, 0, 0)|+ |h1(s, 0, 0)|) ds

+

∫ 1

0

(1− s)α−1

Γ(α)
u(s)ϕ1(x, y)ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
|(h1(s, x(s), y(s))− h1(s, 0, 0)|+ |h1(s, 0, 0)|) ds

6 (r1 ‖φ1‖+ F10 + 1)∫ 1

0

(1− s)α−1

Γ(α)
u(s)ϕ1(x, y)ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
|(h1(s, x(s), y(s))− h1(s, 0, 0)|+ |h1(s, 0, 0)|) ds

6 (r1 ‖φ1‖+ F10 + 1)

(
‖u‖ϕ1(x, y)

Γ(α+ 1)
+
‖v‖ψ1(x, y) +M0

Γ(2α)

)
.

which leads to

‖T1(x, y)‖ 6 (r1 ‖φ1‖+ F1 + 1)

(
‖u‖ϕ1(x, y)

Γ(α+ 1)
+
‖v‖ψ1(x, y) +M0

Γ(2α)

)
< r.

Therefore T1(x, y) 6 r, which means that T1Br ⊂ Br
In the same way, for (x, y) ∈ Br, one can obtain

‖T2(x, y)‖ 6 (r2 ‖φ2‖+ F2 + 1)

(
‖u‖ϕ2(x, y)

Γ(γ + 1)
+
‖v‖ψ2(x, y) +M0

Γ(2γ)

)
< r.

Therefore, for any (x, y) ∈ Br, we have

‖T (x, y)| = ‖T1(x, y)‖+ ‖T2(x, y)‖

6 (r1 ‖φ1‖+ F1 + 1)

(
‖u‖ϕ1(x, y)

Γ(α+ 1)
+
‖v‖ψ1(x, y) +M0

Γ(2α)

)
+ (r2 ‖φ2‖+ F2 + 1)

(
‖u‖ϕ2(x, y)

Γ(γ + 1)
+
‖v‖ψ2(x, y) +M0

Γ(2γ)

)
< r.

which shows that T maps Br into itself.
Step 2. We will show that T : Br 7→ Br is a contraction.
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In order to show that the operator T is a contraction, let (x1, y1), (x2, y2) ∈ X and t ∈ [0, 1]. Then, in view of (H2), we obtain

|T1(x1, y1)− T1(x2, y2)|

6 |f1(t, x1(t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, x1(s), y1(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x1(s), y1(s))ds

]
−
[∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x1(s), y1(s))ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x1(s), y1(s))ds

]
t

−f1(t, x2(t))

[∫ t

0

(t− s)α−1

Γ(α)
g1(s, x2(s), y2(s))ds+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
h1(s, x2(s), y2(s))ds

]
+

[∫ 1

0

(1− s)α−1

Γ(α)
g1(s, x2(s), y2(s))ds+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
h1(s, x2(s), y2(s))ds

]
t|

6 (r1 ‖φ1‖+ F10)

∫ t

0

(t− s)α−1

Γ(α)
|g1(s, x1(s), y1(s))− g1(s, x2(s), y2(s))| ds

+

∫ t

0

(t− s)2α−2

Γ(2α− 1)
|h1(s, x1(s), y1(s))− h1(s, x2(s), y2(s))| ds

+

∫ 1

0

(1− s)α−1

Γ(α)
|g1(s, x1(s), y1(s))− g1(s, x2(s), y2(s))| ds

+

∫ 1

0

(1− s)2α−2

Γ(2α− 1)
|h1(s, x1(s), y1(s))− h1(s, x2(s), y2(s))| ds

we conclude that T is a contraction. Thenby Lemma 2.1, a unique pointX ∈ X exists such that Tx = x. It is the unique solution
of our BVP (1− 3).

5. Example

Consider the following BVP of fractional integro-differential system:

D
3
2

[
x(t)

t2 cos (|x(t)|)

]
=

1 + t2 + sin (x(t)) + cos (y(t))

8(1 + t)

+
1

Γ
(
1
2

) ∫ t

0

(t− s)− 1
2
s2 + s+ 1 + sin (x(s)) + cos (y(s))

8(1 + s)(1 + s2)
ds, (14)

D
4
3

[
y(t)

t2 sin (|y(t)|)

]
=

(1 + t)(1 + t2) + cos (x(t)) + sin (y(t))

(1 + t3)(1 + t2)

+
1

Γ
(
1
3

) ∫ t

0

(t− s)− 2
3
s+ 1 + |x(s)|+ |y(s)|

8(1 + s)(1 + s2)
ds, (15)

x (0) = x (1) = 0 , y (0) = y (1) = 0, (16)

The problem (14-16) is a particular case of (1-3) with α = 3
2 , γ = 4

3 and

f1(t, x(t)) = t2 cos (|x(t)|) , f2(t, y(t)) = t2 sin (|y(t)|) ,

g1(t, x(t), y(t)) =
1 + t2 + sin (x(t)) + cos (y(t))

8(1 + t)
, g2(t, x(t), y(t)) =

(1 + t)(1 + t2) + cos (x(t)) + sin (y(t))

(1 + t3)(1 + t2)
,

and

h1(t, x(t), y(t)) =
t2 + t+ 1 + sin (x(t)) + cos (y(t))

8(1 + t)(1 + t2)
, h2(t, x(t), y(t)) =

t+ 1 + |x(t)|+ |y(t)|
8(1 + t)(1 + t2)

.
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Clearly fi, gi and hi, i = 1, 2 are continuous functions and satisfy the condition (H1) with φ1 = t2, φ2 = t2

and

|g1 (t, x1, y1)− g1 (t, x2, y2)| 6 1

8(1 + t)
|x1 − x2|+

1

8(1 + t)
|y1 − y2| ,

|g2 (t, x1, y1)− g2 (t, x2, y2)| 6 1

(1 + t3)(t+ t2)
|x1 − x2|+

1

(1 + t3)(t+ t2)
|y1 − y2| ,

then

χ1(t) =
1

8(1 + t)
, χ2(t) =

1

(1 + t3)(t+ t2)
,

κ1(t) =
1

8(1 + t)
, κ2(t) =

1

(1 + t3)(t+ t2)
,

and

|h1 (t, x1, y1)− h1 (t, x2, y2)| 6 1

8(1 + t)(1 + t2)
|x1 − x2|+

1

8(1 + t)(1 + t2)
|y1 − y2| ,

|h2 (t, x1, y1)− h2 (t, x2, y2)| 6 1

8(1 + t)(1 + t2)
|x1 − x2|+

1

8(1 + t)(1 + t2)
|y1 − y2| ,

then

ψ1(t) =
1

8(1 + t)(1 + t2)
, ψ2(t) =

1

8(1 + t)(1 + t2)

ϕ1(t) =
1

8(1 + t)(1 + t2)
, ϕ2(t) =

1

8(1 + t)(1 + t2)

Since the assumptions (H1) − (H5) hold, according to
Theorem 3.1 the BVP has at least one solution.

To see if the solution is unique, note that assumptions
(H1) − (H5) are hold, from first part of existence results.
Also, the condition of Theorem 3.2 satisfied, therefore from
Theorem 3.2 the BVP has a unique solution.

6. Conclusions

In this work, we consider the existence results for a nonlocal
bounbary value problem of Caputo-type Hadamard hybrid
fractional integro-differential equations. The problem contain
two different types of perturbalion, this work based on fixed
point theorey and fractional calculus and the work was done
as follow, by transforming the problem into a Volttera integral
system and using the Krasnoselskii fixed point theorem, we
get the existence results of solutions for the boundary value
problem (1) under some conditions. Then, using the Banach
fixed point theorem, we get the existence and uniqueness of
solution for the boundary value problem, after transforming
the problem into a fixed point problem.
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