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Abstract: Class imbalance in data poses challenges for classifier learning, drawing increased attention in data mining and
machine learning. The occurrence of class overlap in real-world data exacerbates the learning difficulty. In this paper, a novel
pseudo oversampling method (POM) is proposed to learn imbalanced and overlapping data. It is motivated by the point that
overlapping samples from different classes share the same distribution space, and therefore information underlying in majority
(negative) overlapping samples can be extracted and used to generate additional positive samples. A fuzzy logic-based
membership function is defined to assess negative overlaps using both local and global information. Subsequently, the identified
negative overlapping samples are shifted into the positive sample region by a transformation matrix, centered around the
positive samples. POM outperforms 15 methods across 14 datasets, displaying superior performance in terms of metrics of Gm,
F1 and AUC.
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1. Introduction
Class imbalance data refers to at least one of its classes is

usually outnumbered by the other classes. Many supervised
learning tasks in real world applications involve imbalanced
datasets, such as those encountered in disease diagnosis
[1], financial risk prediction [2], bug recognition [3], and
many others. In these domains, people have more interest
in minority (commonly called positive) classes and expect
a lower misclassification cost for positive samples after
training process. Most studied imbalanced problems focus on
oversampling which generates additional positive samples or
undersampling which randomly selects a subset of the majority
(commonly called negative) class without replacement [4].
However, the failure of conventional classifiers in imbalanced

learning is not always caused by the skewed distributions
between negative classes and positive classes solely [5].
Beyond that, class overlap makes learning imbalanced data
even harder [6, 7].

Class overlap means that there are regions in the feature
space where it is difficult or impossible to determine with
certainty which class a sample belongs to, based on its feature
values alone. Some studies demonstrate the significant impact
of class overlap on the performance of classifiers that learn
from imbalanced datasets [5]. In order to address the issue
of class overlap, various undersampling approaches have been
devised with the aim of improving the distinction within
inter-class sample distributions, such as Neighbourhood-based
Undersampling (NBU) [8], Density-Based Majority Under-
Sampling Technique (DBMUTE) [9] and Overlap-Based



Applied and Computational Mathematics 2024; 13(5): 165-177 166

Undersampling (OBU) [10]. However, these efforts may entail
a loss of information.

Although finding a clear classification boundary could be
challenging in many real-world datasets due to overlapping
regions [11], these regions also indicate that samples with
different classes share similar information in the feature space.
Due to the sufficient number of negative samples (N ) and
the insufficient number of positive samples (P ) in imbalanced
datasets, the information contained in N is often much greater
than that in P [12]. However, this valuable information is
not fully exploited by most existing rebalancing methods.
Therefore, a natural approach is to mine information from
negative overlapping samples and transfer it to P to enrich the
feature expression.

In machine learning, the distribution of samples in a dataset
is an important aspect of the information contained in the
dataset [13, 14]. That is because the distribution information
can provide critical insights into the underlying patterns and
relationships between the features and the target variable.

As distribution information is typically carried by samples
and expressed through their features, this paper introduces a
novel pseudo oversampling method (POM) designed to extract
the distribution information inherent in negatively overlapping
samples, thereby generating additional positive samples. This
method accomplishes this by converting negative overlapping
samples into positive ones. By this transformation, the feature
representation of the positive class can be enhanced, leading
to an enhancement in the performance of classifiers trained on
rebalanced datasets using POM.

The initialization of POM is to identify negative overlapping
samples, which is often a time-consuming process [15, 16]. To
address this issue, a novel membership function fuzzy set is
introduced, which utilizes both local and global information
derived from negative samples, as well as their distances to
class centers. The membership function directly describes the
degree to which a negative sample is an overlapping sample.
By setting a threshold on this degree of belonging, negative
overlapping samples can be identified efficiently.

The sample transformation of the proposed method is to
generate additional positive samples through transforming the
identified negative overlapping samples. The motivation for

defining the transformation matrix is rooted in the statistical
principle that features with distinctive differences between
their respective means in a dataset are considered to have
strong expressiveness, indicating that they contain significant
distribution information. Therefore, the covariance matrix of
negative features naturally becomes a key consideration in the
proposed approach.

The main contributions of this paper are outlined as follows:
1. A new pseudo oversampling method is proposed to solve

the skew distribution and class overlap problems which
are important and frequent in imbalanced learning.

2. A membership function is proposed to quantitatively and
directly measure the extent to which a negative sample
is an overlapping sample.

3. A transformation matrix deduced in this paper provides
a way to extract and compress the critical information of
datasets.

The originality of POM stems from amount of explorations.
Compared with existing literatures over oversampling methods
[4, 17], POM strives to augment the distribution of the
positive class by leveraging distribution information shared
between the positive and negative classes, as opposed to solely
relying on positive samples or negative samples without a
solid foundation. POM aims to transform negative overlapping
samples into positive samples, rather than generating new
positive samples like most existing oversampling methods,
which maximizes the shared information onto the generated
samples. However, there have not been studies on measuring
the overlapping degree of samples with the membership
function from the perspective of fuzzy field. The membership
function defined in POM is related to local information of
nearest neighbors of every negative sample and the global
information of class centers.

The paper is organized as follows: the proposed method
POM is detailed in Section 2, introducing a novel membership
function and sample transformation matrix. Section 3 reports
the experimental results of POM compared with popular
imbalanced methods and discusses on the effects on the
performance of POM. Section 4 concludes the study. What’s
more, abbreviations defined upon the first appearance in the
main body are listed in Table 1.

Figure 1. Overall flow of processing of the proposed method POM.
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Table 1. List of abbreviation and acronyms used in the paper.

Abbreviation Explanation
POM Pseudo Oversampling Method proposed in this paper
NBU Neighbourhood-based Undersampling [8]
DBMUTE Density-Based Majority Under-Sampling Technique [9]
OBU Overlap-Based Undersampling [10]
RUS Random UnderSampling
TL TomekLinks [21]
SM SMOTE (Synthetic Minority Over-sampling Technique) [20]
SSM SVMSMOTE sampling [22]
ROS Random OverSampling
BSM Borderline SMOTE [23]
ADA ADAptive SYNthetic sampling [24]
SMT SMOTE Tomek [25]
SME SMOTE and Edited Nearest Neighbors [26]
BBC Balanced Bagging Classifier [27]
EEC Easy Ensemble Classifier [28]
BRFC Balanced Random Forest Classifier [29]
RBC RUS Boost Classifier [30]
REMDD Resampling Ensemble Model based on Data Distribution [31]
OPF-US Optimum-Path Forest UnderSampling [32]

2. Proposed Method
Consider a binary imbalanced classification problem with

a training dataset S = P ∪ N with n features, where P ∈
R|P |×n represents positive dataset and N ∈ R|N |×n denotes
negative dataset. For every sample x ∈ S, if the class
label y = +1, then x ∈ P ; if the class label y = −1,
then x ∈ N . Besides, P ∩ N = φ and |P | � |N |.
Figure 1 depicts an overall flow of processing of the proposed
POM. To investigate the global distribution rather than on local
information, clustering is performed as a preliminary step on
N [18]. Specifically, samples ofN are clustered into I subsets,
denoted as N1, N2, ..., NI , where I is determined using the C-
H score [19]. POM is then operated on each dataset Ni ∪ P
separately, where i = 1, 2, ..., I .

The proposed POM consists of three main steps. Firstly,
in Section 2.1, a membership function is defined to identify
negative samples that overlap with positive samples. Secondly,
in Section 2.2, a transformation matrix is constructed to
compress the information of negative data. Thirdly, in Section
2.3, the negative overlapping samples are transformed into
positive samples using the transformation matrix. Finally, to
clearly understand the role of each step, the process of POM
on a toy dataset is visualized in Section 2.4.

2.1. Identification of Negative Overlapping Samples with
Membership Function

A negative sample can be considered an overlapping sample
if its neighbors contain both positive and negative samples.
The concept of membership function naturally provides a way
to address the subjectivity of this identification. Notice that
the degree to which a negative sample x is an overlapping
sample is positively correlated with the proportion of positive
samples among its neighboring samples. Furthermore, the
distance between x and class centers is considered to refine
the definition. Based on these considerations, the membership

function of x as an overlapping sample is defined as follows:

MF (x) = e
− 1

2 ·(
KP (x)/K−1

DNi
(x)/(DNi

(x)+DP (x))
)2

, (1)

where KP (x) is the number of positive samples belonging
to the K nearest neighbors of x. DP (x) (or DNi

(x)) is the
Euclidean distance betweenx and the center ofP (orNi). This
membership function capitalizes on both the local information
by considering the neighbors of x and the global information
by taking into account the distances between x and the class
centers.

As shown in Figure 2, negative samples x, x1, x2 and
x3 are distributed in different areas. For x, its 10 nearest
neighbors consist of 4 positive samples, i.e., the difference
between the number of positive and negative samples in the
neighbors is not large. Besides, DN (x) is close to DP (x) in
Euclidean space. Therefore,MF (x) is close to e−

1
2 according

to (1). x1 is located in the inner of P and most of its nearest
neighbors are positive samples, so KP (x) � K − KP (x).
Besides, x1 is close to the center of P , so DN (x1) �
DP (x1). Therefore, MF (x1) is close to e0. Considering
x2 and x3 located respectively in the inner and boundary
of N , the neighbors of them are full of negative samples.
Besides, DP (x2) � DN (x2) and DP (x3) > DN (x3).
Therefore, MF (x3) > MF (x2) > 0 and MF (x2) → 0.
In general, both the neighbors of a negative sample and the
distance between the negative sample and the central points are
considered, i.e., both local information and global information
can be incorporated in the membership function of the negative
sample as an overlapping one.

Then the negative overlapping samples can be identified as
follows:

No
i = {(x, y) ∈ Ni|MF (x) > ε}. (2)

where ε ∈ (0, 1) is threshold. With this rule, negative samples
with large membership degrees to overlapping regions are
highly likely to be transformed into positive samples.

Figure 2. Negative samples distributed in different areas have different overlapping
degree.
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Figure 3. Oversampling with POM on a toy dataset.

2.2. Construction the Transformation Matrix

Given a cluster of negative training set Ni, it can be
represented with its features as Ni = (F1,F2, . . . ,Fn), where
Fj ∈ R|Ni|×1(j = 1, 2, . . . , n) is the j-th feature vector. Then
the covariance matrix of Ni is written as:

ΣNi
=


cov1,1 cov1,2 · · · cov1,n
cov2,1 cov2,2 · · · cov2,n

...
...

. . .
...

covn,1 covn,2 · · · covn,n

 , (3)

where covj1,j2 = (Fj1 − F )T · (Fj2 − F ) shows the
covariance of Fj1 and Fj2 (j1, j2 = 1, 2, . . . , n), and
F = 1

n

∑n
j=1 Fj . Because ΣNi

is real symmetric and
positive semi-definite, it has n linearly independent and
orthogonal eigenvectors ξ1, ξ2, . . . , ξn ∈ R|Ni| corresponding
to eigenvalues λ1, λ2, . . . , λn, where λ1 ≥ λ2 ≥ . . . ≥ λn ≥
0.

From the information theory perspective, the more scattered
the dataset distribute, the more information it contains. Notice
that if the absolute value of an eigenvalue λi is high, the
projections of all negative samples on the eigenvector ξi of λi
are scattered. It means that the larger the eigenvalue, the more
information of Ni is stored in the corresponding eigenvector.
It is assumed that not all eigenvalues of ΣNi

are 0. Then some
eigenvectors are selected to represent features of Ni:

QNi
= (ξ1, ξ2, . . . , ξT ). (4)

The number of eigenvectors T can be expressed as follows:

T = argmin
t

∑t
i=1 λi∑n
i=1 λi

≥ γ(λt > 0), (5)

where γ is a constant. For example, if γ = 0.9, one can think
that there are T eigenvectors retain more than 90% information
of Ni. Besides, λt > 0 confirms that the t eigenvectors
selected into matrix QNi

are effective. So, QNi
is actually

a compressed feature matrix of Ni. Finally, the transformation
matrix is constructed asQNi

QT
Ni

.

2.3. Sample Transformation

Because samples contained in No
i account for only a part

of the overall negative samples and locate at the overlapping
regions, the distribution characteristics of the negative class

reflected by these samples are not obvious enough or biased.
Therefore, the matrixQNi

QT
Ni

is used to transfer every sample
xNo

i
∈ No

i :

xnewi = QNiQ
T
Ni
· xNo

i
+ xP , (6)

where xP is the center of positive class. QNi
QT
Ni

is imposed
on sample xNo

i
, which transfers the distribution information

of the negative subset Ni to No
i . And xP shiftsQNQ

T
N ·xNo

i

to close the center of P , which makes xnewi more similar with
positive samples. Then all these xnewi are collected into a set,
namely Pnewi .

If the size of (
⋃I
i=1 P

new
i )

⋃
P is smaller than the size ofN ,

Synthetic Minority Over-sampling Technique (SMOTE) [20]
would be used to oversample on this union; otherwise, random
undersampling would be operated on

⋃I
i=1 P

new
i .

2.4. Visualization of POM on a Toy Dataset

The process of POM is visualized on a toy dataset shown
in Figure 3, where the negative samples can be clustered into
two clustering points with grey colors and positive samples
are presented with yellow points (Figure 3a). Some negative
samples are located within the positive class, which is clearly
a case of sample overlap and can lead to confusion in
conventional classifiers with respect to their labels. With (2),
some negative samples are identified as negative overlapping
samples (No

i ), which are scatted by grey points with black
rings as shown in Figure 3b.

Samples of two clusters in No
i are transformed into positive

samples, respectively, as shown in Figure 3c. New generated
positive samples (yellow points with black rings, noted as
Pnewi ) not only store the feature information of the negative
class and the location information of the negative overlapping
samples, but also try to get close to the negative class,
making the data distribution characteristics more obvious. In
Figure 3d, the distribution of new positive data (P

⋃
Pnewi )

is strengthened and more consistent with peoples’ visual
perception.

3. Experiments
In this section, the performance of the proposed method

is evaluated on 14 commonly used datasets in terms of three
quality assessment metrics: Gm, F1, AUC.
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3.1. Experiment Setting

3.1.1. Datasets
In this paper, 4 binary imbalanced datasets are collected

from Machine Learning Repository UCI1 and 10 binary

imbalanced datasets are coming from KEEL2. The details of
these datasets are presented in Table 2. The size of data varies
from 214 to 2000, the number of attributes ranges from 4 to
34, and the imbalanced ratio (IR) ranges from 2.9 to 85.88.

Table 2. The details of 14 binary datasets used in experiments.

ID Datasets Size |N| |P| Attr. IR

D1 vehicle1 846 629 217 18 2.9
D2 dermatology3 6 358 267 91 34 2.93
D3 Wireless Indoor Localization2 2000 1500 500 7 3
D4 Wireless Indoor Localization4 2000 1500 500 7 3
D5 Blood 748 570 178 4 3.2
D6 glass6 214 185 29 9 6.38
D7 led7digit-0-2-4-5-6-7-8-9 vs 1 443 406 37 7 10.97
D8 dermatology6 358 338 20 34 16.9
D9 yeast4 1484 1433 51 8 28.1
D10 winequality-red4 1599 1546 53 11 29.17
D11 kr-vs-k-zero vs eight 1460 1433 27 6 53.07
D12 winequality-white-3-9 vs 5 1482 1457 25 11 58.28
D13 poker-8-9 vs 6 1485 1460 25 10 58.4
D14 poker-8 vs 6 1477 1460 17 10 85.88

Table 3. 15 methods used to compare with POM.

Group Imbalanced methods
RUS: Random UnderSampling

Group1: undersampling methods
TL: TomekLinks [21]
ROS: Random OverSampling
SM: SMOTE [20]

Group2: oversampling methods SSM: SVMSMOTE [22]
BSM: Borderline SMOTE [23]
ADA: ADAptive SYNthetic sampling [24]
SMT: SMOTE Tomek [25]

Group3: combined sampling methods
SME: SMOTEENN [26]
RUS: Random UnderSampling
BBC: Balanced Bagging Classifier [27]

Group4: sampling combined with integrated learning methods EEC: Easy Ensemble Classifier [28]
BRFC: Balanced Random Forest Classifier [29]
RBC: RUS Boost Classifier [30]
REMDD [31] (2020): Resampling Ensemble Model based on Data Distribution

Group5: advanced methods
OPF-US [32] (2022): Optimum-Path Forest UnderSampling

3.1.2. Evaluation Metrics
Accuracy (ACC) is a commonly employed metric for

balanced datasets. For imbalanced datasets, there are four
fundamental measures, TP , FP , TN and FN . FP (TN)
is the number of positive (negative) samples classified into
negative class incorrectly (correctly), and FN(TP ) can be
understood similarly. Three widely-used evaluation metrics,
namely Gm, F1, and AUC, are considered based on the
aforementioned fundamental measures. The metric Gm is
defined as the geometric mean between the true positive
rate (TPR = TP/(TP + FN)) and the true negative rate
(TNR = TN/(TN +FP )). The formula for Gm is given by
the following equation:

Gm =
√
TPR× TNR. (7)

If there is any poor performance of the classifier, the values
of Gm will become low. The metric F1 is a harmonic mean
between Recall = TP/(TP + FN) and Precision =
TP/(TP + FP ), and is defined in the form

F1 = 2× Recall × Precision
Recall + Precision

. (8)

It simultaneously assesses the performance of the positive
class from the perspectives of both true positives and predicted
positives.

By adjusting the threshold value of decision model, a ROC
curve showing the relationships between the values of TPR
and FPR is generated. AUC is the area under ROC, which
shows the trade-off between TPR and FPR.

1 https://archive.ics.uci.edu/ml/index.php
2 http://sci2s.ugr.es/keel/imbalanced.php
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3.1.3. Reference Methods
15 popular imbalanced methods are respectively combined

with the same classifier SVM to compare with POM under
same settings. Those approaches are divided into five groups:
two undersampling methods, five oversampling methods, two
combined sampling methods, four ensemble learning methods,
and two advanced learning methods. The detailed information
is listed in Table 3.

3.2. Parameter Settings

As a commonly used and outstanding classifier, Support
Vector Machine (SVM) [33] has the capability to generate

posterior class probabilities for training samples. Therefore,
SVM with Gaussian kernel is employed as the chosen classifier
in this paper. To assess overall performance stable, POM and
other baseline methods are evaluated by averaging the results
from ten independent runs of 5-fold cross-validation on each
dataset.

All experiments are implemented with Python 3.7 software
and run on a computer with an i7-7700 CPU and 32 GB of
RAM. Additionally, there are two parameters ε and γ in this
paper considered as follows:

Figure 4. The performance of POM related parameter ε on datasets D1 and D6.

Figure 5. The performance of POM referenced with γ.
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Every negative sample is assigned a membership value
through (1). Parameter ε in (2) determines which negative
sample distributed in the overlapping area. If parameter γ is
fixed as 0.9 in (5) to ensure that a high rate of information
is extracted from negative class, the effectiveness of ε can
be observed and evaluated on the performance of POM. The
experimental results of POM are presented in Figure 4, where
the effect of parameter ε is investigated varying from 0.1 to
0.9 with an interval of 0.1 on two imbalanced datasets (D1
and D6). From (2), it is noteworthy that while the size of No

may decrease as ε increases, it is observed that POM achieves
peak values across three metrics simultaneously when ε is set
to 0.3. This indicates that only positive samples demonstrating
significant representation play a crucial role in effectively
learning from imbalanced data. Based on this observation, ε
is set as 0.3 for all subsequent experiments.

Experiments related to the parameter γ are conducted on the
14 datasets. As shown in Figure 5, the performance of POM on
all imbalanced datasets is basically stable as γ increases from
0.1 to 0.9 with an interval of 0.1. Especially for the metrics
of F1 and AUC, the gap between the maximum value and
the minimum value on each dataset is no more than 0.0521
and 0.0666, respectively. Furthermore, the fluctuations of Gm
score for different γ on each dataset are within a range of
0.0414, except for D7 and D5, where the differences between
the peak and trough values are 0.1171 and 0.0801, respectively.
Overall, the performance of POM is not sensitive to the

parameter γ, which validates that an appropriate ε contributes
to the effectiveness of the information of negative overlapping
samples. Therefore, γ is set as 0.9 to reduce information loss.

3.3. Quantitative Comparison

Figure 6 reports the performance of Gm on 14 datasets for
all imbalanced methods. The proposed method POM achieves
a remarkable peak value 12.9025, surpassing ensemble
imbalanced method, BRFC, with a gap of 2.0923. Noted that
the ensemble approaches are generally considered superior
to other approaches. This claim is supported by the results
shown in the table, where ensemble methods (RBC, BRFC,
EEC, BBC) outperform other methods, particularly the two
advanced sampling methods (OPF-US and REMDD), with
the exception of POM. Besides, with the exception of POM,
ensemble methods show strong competitiveness compared
with other sampling methods, even surpass advanced methods
(OPF-US, REMDD) no less than 3.6607.

Noticing that the metric Gm aims to maximize the accuracy
for each class while maintaining balance between these
accuracies, it can be inferred from the excellent performance
of POM that it effectively handles both positive and negative
samples, resulting in remarkable outcomes. This observation
further supports the feasibility of extracting information
from negative overlapping samples and transforming it for
oversampling purposes.

Figure 6. A bar chart referring to average testGm compares 15 popular imbalance approaches and POM on 14 datasets.

Figure 7 illustrates the testing F1 scores for 15 prevalent
imbalanced methods and POM across 14 imbalanced datasets
using a line graph. The proposed method POM achieves
the best performance on all datasets, except D3. However,
on D3 the performance difference between POM and the
best method (OPF-US) are imperceptible (0.0037). Besides,
some imbalanced methods becomes competitive occasionally.
For examples, the advanced method (OPF-US) achieves good
performance on datasets (D2, D3, and D4), where the

gap of OPF-US to the best performance is no more than
0.0268. However, OPF-US performs worst on other datasets,
especially on datasets with IR ≥ 28.1. Combined sampling
method (SME) is competitive among all kinds of traditional
sampling methods, but the gap of SME to POM is large on all
datasets (no less than 0.1262). Overall, POM achieves good
performance to recognize positive samples under the metric of
F1.
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Figure 7. Broken lines referring to average test F1 compares 15 popular imbalanced approaches and POM on 14 datasets.

Figure 8 shows a radar chart showcasing the testAUC of 15
popular imbalanced approaches and POM on 14 imbalanced
datasets. The radar chart consists of 14 equi-angular spokes
corresponding 14 imbalanced datasets and the performance
of each imbalanced method is shown with a 14-side shape.
Notably, the 14-side shape of POM (highlighted by a solid
brown line) completely covers the other 14-side shapes with

scores no less than 0.9956 on 9 datasets, which demonstrates
the strong discriminatory power of POM between positive
and negative instances. Furthermore, there is a substantial
performance gap between POM and other methods on certain
datasets, such as 0.1006 on D1, 0.1472 on D9, and 0.2984 on
D12. Overall, POM gets an excellent trade-off between TPR
and FPR on all datasets.

Figure 8. A radar chart referring to average testAUC compares 15 popular imbalanced approaches and POM on 14 datasets.

3.4. Statistical Analysis

Boxplots (shown in Figure 9) statistically reflects the
learning performance of every method and facilitates a
comparison among different approaches. Every box consists
of five nodes: minimum, first quartile (Q1), median, third
quartile (Q3) and maximum, where median is a main value
to show the entire performance and IQR = Q3 − Q1 is
an important quantity expressing the degree of dispersion.
Firstly, POM outperforms the other methods referring to

the median. For examples, compared with the second best
methods, POM gets 0.9788 higher 0.1548 than BRFC for Gm,
POM achieves 0.9646 higher 0.3115 than RUS for F1, POM is
0.9987 higher 0.0448 than OPF-US for AUC. Besides, the
small IQR shows the good stability of POM. Specifically,
the IQR of POM achieves the best value 0.01975 on AUC,
and is less 0.1456 than that of the second best method TL.
This suggests that rebalanced dataset through POM provides
sufficient information and captures meaningful patterns for
classifiers.
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Figure 9. Box-plots of the three metrics for the 15 popular imbalanced methods and POM on all datasets.

Table 4. Nemenyi test for 16 imbalanced methods based on the performance ofGm on all datasets.

RUS TL SM SSM ROS BSM ADA SMT SME BBC EEC BRFC RBC REMDD OPF-US POM

RUS — 0.0316 0.8407 0.2924 0.3688 0.7662 0.9000 0.6669 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.8034 0.0876

TL — 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.8655 0.0022 0.0057 0.0010 0.0277 0.9000 0.9000 0.0010

SM — 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.3828 0.5427 0.1567 0.8159 0.9000 0.9000 0.0010

SSM — 0.9000 0.9000 0.9000 0.9000 0.9000 0.0462 0.0927 0.0112 0.2695 0.9000 0.9000 0.0010

ROS — 0.9000 0.9000 0.9000 0.9000 0.0666 0.1274 0.0172 0.3414 0.9000 0.9000 0.0010

BSM — 0.9000 0.9000 0.9000 0.3042 0.4666 0.1160 0.7414 0.9000 0.9000 0.0010

ADA — 0.9000 0.9000 0.4666 0.6172 0.2078 0.8904 0.9000 0.9000 0.0010

SMT — 0.9000 0.2174 0.3550 0.0749 0.6420 0.9000 0.9000 0.0010

SME — 0.5675 0.7165 0.2924 0.9000 0.9000 0.9000 0.0010

BBC — 0.9000 0.9000 0.9000 0.5179 0.3414 0.4392

EEC — 0.9000 0.9000 0.6669 0.5054 0.2808

BRFC — 0.9000 0.2475 0.1342 0.7041

RBC — 0.9000 0.7786 0.0982

REMDD — 0.9000 0.0010

OPF-US — 0.0010

POM —

Table 5. Nemenyi test for 16 imbalanced methods based on the performance of F1 on all datasets.

RUS TL SM SSM ROS BSM ADA SMT SME BBC EEC BRFC RBC REMDD OPF-US POM

RUS — 0.1274 0.9000 0.9000 0.3969 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.7165 0.9000 0.0627

TL — 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.0212 0.2475 0.0259 0.1414 0.9000 0.9000 0.0010

SM — 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.8407 0.9000 0.8779 0.9000 0.9000 0.9000 0.0010

SSM — 0.9000 0.9000 0.9000 0.9000 0.9000 0.5799 0.9000 0.6172 0.9000 0.9000 0.9000 0.0010

ROS — 0.9000 0.9000 0.9000 0.9000 0.1038 0.5799 0.1223 0.4252 0.9000 0.9000 0.0010

BSM — 0.9000 0.9000 0.9000 0.8407 0.9000 0.8779 0.9000 0.9000 0.9000 0.0010

ADA — 0.9000 0.9000 0.7414 0.9000 0.7786 0.9000 0.9000 0.9000 0.0010

SMT — 0.9000 0.6669 0.9000 0.7041 0.9000 0.9000 0.9000 0.0010

SME — 0.8159 0.9000 0.8531 0.9000 0.9000 0.9000 0.0010

BBC — 0.9000 0.9000 0.9000 0.3282 0.6296 0.2808

EEC — 0.9000 0.9000 0.8904 0.9000 0.0259

BRFC — 0.9000 0.3688 0.6669 0.2475

RBC — 0.7414 0.9000 0.0555

REMDD — 0.9000 0.0010

OPF-US — 0.0010

POM —
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Table 6. Nemenyi test for 16 imbalanced methods based on the performance ofAUC on all datasets.

RUS TL SM SSM ROS BSM ADA SMT SME BBC EEC BRFC RBC REMDD OPF-US POM

RUS — 0.2174 0.7910 0.6420 0.6544 0.9000 0.7786 0.5303 0.9000 0.9000 0.9000 0.9000 0.9000 0.7786 0.3550 0.0383

TL — 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.0226 0.0491 0.0172 0.4392 0.9000 0.0010 0.0010

SM — 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.2808 0.4392 0.2374 0.9000 0.9000 0.0010 0.0010

SSM — 0.9000 0.9000 0.9000 0.9000 0.9000 0.1647 0.2808 0.1342 0.8655 0.9000 0.0010 0.0010

ROS — 0.9000 0.9000 0.9000 0.9000 0.1729 0.2924 0.1414 0.8779 0.9000 0.0010 0.0010

BSM — 0.9000 0.9000 0.9000 0.5179 0.6669 0.4666 0.9000 0.9000 0.0016 0.0010

ADA — 0.9000 0.9000 0.2695 0.4252 0.2273 0.9000 0.9000 0.0010 0.0010

SMT — 0.9000 0.1038 0.1893 0.0838 0.7538 0.9000 0.0010 0.0010

SME — 0.4252 0.5799 0.3688 0.9000 0.9000 0.0010 0.0010

BBC — 0.9000 0.9000 0.9000 0.2695 0.8655 0.3042

EEC — 0.9000 0.9000 0.4252 0.7165 0.1806

BRFC — 0.9000 0.2273 0.9000 0.3550

RBC — 0.9000 0.1647 0.0112

REMDD — 0.0010 0.0010

OPF-US — 0.9000

POM —

To investigate the significant differences in performance
among various methods, a Nemenyi test [34] is conducted
on 16 imbalanced methods. The p-values referring to Gm,
F1, and AUC are 2.73 × 10−9, 1.16 × 10−4, and 2.30 ×
10−12, respectively. Since p-values are far less than 0.05,
the performance of 16 imbalanced methods is significantly
different. Specifically, the performance of Gm is reported
in Table 4, it is meaningless to research on A-vs-A, so the
diagonal positions in the table is ”—”, where A traverses
through 16 imbalanced methods. Besides, p-values of between
Ai-vs-Aj and Aj-vs-Ai is no difference, where Ai and Aj
are two different methods traveling through 16 imbalanced
methods, respectively. Therefore, Table 4 is filled with an
upper triangle, where all p-values less than 0.05 are marked
bold. Firstly, for POM-vs-A, there are 10 p-values (all
of them are 0.0010) smaller than 0.05 among 15 p-values.
Combined with the experimental results of Section 3.4, POM
significantly outperforms 10 imbalanced methods, except for
TL and 4 ensemble methods. Besides, there are 7 p-values
totally less than 0.05 for the rest 15 imbalanced methods
without considering the p-values involved in POM. For the
most competitive ensemble method, BRFC, only three p-
values of BRFC-vs-A (BRFC-vs-TL, BRFC-vs-SSM, BRFC-
vs-SSM) are no more than 0.05 (0.001, 0.0112, 0.0172
respectively). Overall, the proposed method POM achieves
good performance referring Gm, where POM is significantly
better than most popular methods.

Similarly, the Nemenyi tests about performance F1 and
AUC are reported in Table 5 and Table 6, respectively. There
are 11 p-values of POM-vs-A no more than 0.0259 for 15
imbalanced methods, except for three ensemble methods and
RUS, where p-values of POM-vs-RUS (0.0627) and POM-vs-
RBC (0.0555) is close to 0.05. Without considering POM,
there are two p-values of Ai-vs-Aj are smaller than 0.05.
Therefore, for the evaluation criterion F1, POM is significantly
better than 11 imbalanced learning methods, but there is no

significance among 15 methods basically.
The results in Table 6 shows that the performance of

POM and other method is similar to that of in Tables 4-5.
However, there is significance between the advanced method
OPF-US and 9 imbalanced methods. Besides, there is no
significance between POM and OPF-US. Therefore, POM and
OPF-US show excellent trade-off between TPR and FPR
and significantly outperform than other classical imbalanced
methods.

3.5. The Properties of POM

Table 7. Average running time(s).

D1 D5 D6 D7

RUS 0.001 0.0009 0.0008 0.0009

TL 0.01 0.0026 0.0017 0.002

SM 0.002 0.0015 0.0013 0.0013

SSM 0.0212 0.0128 0.0045 0.0042

ROS 0.0008 0.0007 0.0005 0.0005

BSM 0.0058 0.0029 0.0022 0.0023

ADA 0.0048 0.0026 0.0025 0.0023

SMT 0.023 0.0051 0.0037 0.004

SME 0.0257 0.0056 0.0047 0.0049

BBC 0.0512 0.0317 0.0303 0.031

EEC 0.8052 0.6749 0.6965 0.6901

BRFC 0.2451 0.2367 0.2339 0.2368

RBC 0.1436 0.1288 0.1243 0.1273

REMDD 0.8851 0.7599 0.744 0.7484

OPF-US 27.1199 20.8531 1.8012 4.7754

POM 0.6986 0.6622 0.3054 0.4544

To measure the efficiency of the proposed POM, the running
time of 15 imbalanced methods is measured on four datasets by
running the codes on Python 3.9.4 (the computer parameters:
CPU i7-7700, RAM 32.0 GB) shown in Table 7. Experimental
results show that the cost of ensemble methods (such as BBC,
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EEC, BRFC and RBS) is higher than that of oversampling
(undersampling) methods, more than 10 times, on every
dataset. For example, on D1, the running time of oversampling
(undersampling) methods is no more than 0.001s but the
running time of ensemble methods is no less than 0.1436s. The
cost of advanced methods (such as REMDD and OPF-US) are
more expensive than that of classical methods. The cost of the
proposed method POM is lower than that of popular methods
and some of ensemble methods (such as EEC). However,
POM takes the promoting performance compared with other
methods on all datasets. The reason for the high efficiency
of POM is that no complex parameters need to be stored and
calculated during oversampling. Besides, there is no complex
integration algorithm involved in training process.

Table 8. The quantity ofNo of membership function in training process.

|S| |P| |N| |No| |No|
|P|

|No|
|N|

D1 677 174 503 153 0.88 0.30

D2 286 73 214 3 0.04 0.01

D3 1600 400 1200 32 0.08 0.03

D4 1600 400 1200 21 0.05 0.02

D5 598 142 456 188 1.32 0.41

D6 171 23 148 4 0.17 0.03

D7 354 30 325 13 0.43 0.04

D8 286 16 270 3 0.19 0.01

D9 1187 41 1146 78 1.90 0.07

D10 1279 42 1237 160 3.81 0.13

D11 1168 22 1146 20 0.91 0.02

D12 1186 20 1166 41 2.05 0.04

D13 1188 20 1168 42 2.10 0.04

D14 1182 14 1168 40 0.35 0.03

To take an insight into how many negative overlapping
samples there are in each dataset, all negative overlapping
samples are collected as No =

⋃
No
i according to (2). List

values of |No| and related variables (|S|, |P |, |N |, |N
o|
|P | , |N

o|
|N | )

during oversampling as shown in Table 8. Firstly, a remarkable
phenomenon is the number of No ranging from 3 to 188,
which is not close to the size of S, P , or N . Besides, the ratio
between |No| and |N | is no more than 0.07 on most datasets
except for D1, D5, and D10. There are two inspirations: i).
Only a few negative samples in overlapping regions play a
supporting role in imbalanced learning; ii). The dataset with
the higher or lower ratio between |No| and |N | has no clear
relation to the performance of POM. Finally, the ratio between
|No| and |P | is relatively large on most datasets (more than
0.17) except for D2, D3, and D4 (smaller than 0.08). It is easy
to notice that if the ratio between |No| and |N | is less than 0.08
on datasets, such as D2, the performance of POM on it would
be close to compared methods, and vice versa. Interestingly,
the performance of POM is not directly proportional to the size
of No or the ratio between |No| and |N |, but closely related to
the ratio between |No| and |P |. This indicates that POM can
better capture and represent the characteristics and patterns of
both positive and negative classes.

Notice that the inequality |P |+ |No| < |N | holds true on all

datasets from Table 8. This illustrates that every dataset is not
balanced by the transformed samples and SMOTE also works
during the rebalance procedure. However, by comparing the
performance of POM and SM (where only SMOTE is used
to rebalance) based on results shown in Figures 6-9, POM
consistently outperforms SM on all datasets. This indicates
that the newly generated samples Pnew transformed from No

exactly play a crucial role in providing essential support points
for strengthening the representation of the distribution of the
original positive class P . Subsequently, SMOTE strengthens
the connection between the support points and P . There is a
large difference between the distribution of the data rebalanced
by POM and the data rebalanced by SMOTE only.

To verify the generalization of POM, the results of the
learning model about training and testing process on 7 datasets
are shown in Figure 10. First of all, the datasets leveraged
in this experiment are diverse, such as IR ranging from 2.9
to 85.88, data size varying from 443 to 2000. Besides, the
performance of four metrics is considered, where the solid line
and the dotted line of the same color represent the training and
testing results of one metric, respectively.

It is evident that the scores of training results and testing
results exhibit a close resemblance (the gaps between them
smaller than 0.0459) across various metrics for most datasets,
except for D14. The reason for this phenomenon on D14
can be attributed to its high imbalance ratio (IR) of 85.88
and an extremely small number of positive samples (17).
During the cross-validation process, only a limited number
of 3 to 5 positive samples are randomly assigned to the
testing set, where the characteristics of these small samples
can significantly influence the results. Consequently, there is a
notable disparity between the training and testing results, with
the training process yielding a Gm score that is 0.2544 higher
than that of the testing process.

Figure 10. The training and testing performance of classifiers learned from dataset
balanced through POM.

4. Conclusions

In this paper, a new pseudo oversampling method POM
is proposed, which strengthens feature expression of positive
class through transferring features of negative overlapping
samples that exhibit similar distribution with positive samples.
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During the identification of negative overlapping samples,
a novel membership function has been introduced to
quantitatively and explicitly evaluate the degree to which a
negative sample overlaps with positive samples. Additionally,
a transformation matrix has been devised to distribute the
negative samples over the negatively overlapping samples.
Subsequently, these samples are adjusted by the center of the
positive class to create new positive samples. The suite of
quantitative experiments shows the outperformance of POM
compared with popular imbalanced learning methods. In
future endeavors, deep convolutional networks are considered
to construct a transfer matrix and acquire comprehensive and
underlying distribution information.
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